IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2019i1p69-d300766.html
   My bibliography  Save this article

Pool Boiling Heat Transfer Coefficient of Low-Pressure Glow Plasma Treated Water at Atmospheric and Reduced Pressure

Author

Listed:
  • Bartosz Gil

    (Faculty of Mechanical and Power Engineering, Wroclaw University of Science and Technology, wybrzeże Stanisława Wyspiańskiego 27, 50-370 Wrocław, Poland)

  • Zbigniew Rogala

    (Faculty of Mechanical and Power Engineering, Wroclaw University of Science and Technology, wybrzeże Stanisława Wyspiańskiego 27, 50-370 Wrocław, Poland)

  • Paweł Dorosz

    (Faculty of Mechanical and Power Engineering, Wroclaw University of Science and Technology, wybrzeże Stanisława Wyspiańskiego 27, 50-370 Wrocław, Poland)

Abstract

This paper investigates the influence of low-pressure glow plasma water treatment on boiling phenomenon. The presented results show the novel influence and potential new applications of low-pressure glow plasma treated water. Low-pressure glow plasma water treatment affects some of its physical properties such as surface tension, pH, and electric conductivity; this is due to changes in the water structure. An experimental analysis aimed to investigate the effect of such a treatment on the boiling heat transfer coefficient of water, and to assess the stability of GPTW. The experiments were carried out at atmospheric and reduced pressure for heat fluxes up to 70 kW/m 2 . The analysis shows significant deterioration of the boiling heat transfer coefficient under reduced pressure. In addition, the plasma treatment process had no significant effect on the thermal conductivity of water, as confirmed experimentally. A slight increase was observed, but it was within the measuring error range of the instruments used.

Suggested Citation

  • Bartosz Gil & Zbigniew Rogala & Paweł Dorosz, 2019. "Pool Boiling Heat Transfer Coefficient of Low-Pressure Glow Plasma Treated Water at Atmospheric and Reduced Pressure," Energies, MDPI, vol. 13(1), pages 1-13, December.
  • Handle: RePEc:gam:jeners:v:13:y:2019:i:1:p:69-:d:300766
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/1/69/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/1/69/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jingming Dong & Weining Wang & Zhitao Han & Hongbin Ma & Yangbo Deng & Fengmin Su & Xinxiang Pan, 2018. "Experimental Investigation of the Steam Ejector in a Single-Effect Thermal Vapor Compression Desalination System Driven by a Low-Temperature Heat Source," Energies, MDPI, vol. 11(9), pages 1-13, August.
    2. Jie Ren & Zuoqin Qian & Zhimin Yao & Nianzhong Gan & Yujia Zhang, 2019. "Thermodynamic Evaluation of LiCl-H 2 O and LiBr-H 2 O Absorption Refrigeration Systems Based on a Novel Model and Algorithm," Energies, MDPI, vol. 12(15), pages 1-28, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kittiwoot Sutthivirode & Tongchana Thongtip, 2022. "Experimental Determination of an Optimal Performance Map of a Steam Ejector Refrigeration System," Energies, MDPI, vol. 15(12), pages 1-19, June.
    2. Tongchana Thongtip & Natthawut Ruangtrakoon, 2021. "Real Air-Conditioning Performance of Ejector Refrigerator Based Air-Conditioner Powered by Low Temperature Heat Source," Energies, MDPI, vol. 14(3), pages 1-20, January.
    3. Shizhen Li & Wei Li & Yanjun Liu & Chen Ji & Jingzhi Zhang, 2020. "Experimental Investigation of the Performance and Spray Characteristics of a Supersonic Two-Phase Flow Ejector with Different Structures," Energies, MDPI, vol. 13(5), pages 1-17, March.
    4. Chen, W.D. & Chua, K.J., 2021. "Energy performance analysis and optimization of a coupled adsorption and absorption cascade refrigeration system," Applied Energy, Elsevier, vol. 301(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2019:i:1:p:69-:d:300766. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.