IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2019i1p56-d300343.html
   My bibliography  Save this article

Investigating Agglomeration Tendency of Co-Gasification between High Alkali Biomass and Woody Biomass in a Bubbling Fluidized Bed System

Author

Listed:
  • Tanakorn Kittivech

    (The Joint Graduate School of Energy and Environment, Center of Excellence on Energy Technology and Environment, King Mongkut’s University of Technology Thonburi, Bangkok 10140, Thailand)

  • Suneerat Fukuda

    (The Joint Graduate School of Energy and Environment, Center of Excellence on Energy Technology and Environment, King Mongkut’s University of Technology Thonburi, Bangkok 10140, Thailand)

Abstract

Palm empty fruit bunches (EFB) is known as problematic biomass due to its high alkali content, i.e., more than half of inorganic matter is potassium (K). EFB when used as a fuel in fluidized beds with silica sand as bed material could form the sticky compound K 2 O·nSiO 2 starting at around 750 °C and adhere bed particles together, resulting in bed agglomeration. Blending EFB with rubber wood sawdust (RWS) could improve the chemical properties and consequent ash composition of the blended fuel. In this study, RWS was blended with EFB at three ratios: RWS:EFB = 25:75, RWS:EFB = 50:50, and RWS:EFB = 75:25. Adding RWS to the fuel prolonged de-fluidization time. The high content of CaO in the RWS ash acted as an inhibitor to prevent the formation of K 2 O·nSiO 2 and, instead, enhanced the formation of K 2 CO 3 , a higher melting point compound, which reduced bed agglomeration. During the experiment using RWS:EFB = 75:25, no bed agglomeration was found.

Suggested Citation

  • Tanakorn Kittivech & Suneerat Fukuda, 2019. "Investigating Agglomeration Tendency of Co-Gasification between High Alkali Biomass and Woody Biomass in a Bubbling Fluidized Bed System," Energies, MDPI, vol. 13(1), pages 1-15, December.
  • Handle: RePEc:gam:jeners:v:13:y:2019:i:1:p:56-:d:300343
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/1/56/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/1/56/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tanakorn Kittivech & Suneerat Fukuda, 2019. "Effect of Bed Material on Bed Agglomeration for Palm Empty Fruit Bunch (EFB) Gasification in a Bubbling Fluidised Bed System," Energies, MDPI, vol. 12(22), pages 1-16, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Carlos Vargas-Salgado & Elías Hurtado-Pérez & David Alfonso-Solar & Anders Malmquist, 2021. "Empirical Design, Construction, and Experimental Test of a Small-Scale Bubbling Fluidized Bed Reactor," Sustainability, MDPI, vol. 13(3), pages 1-22, January.
    2. Sylvie Valin & Serge Ravel & Philippe Pons de Vincent & Sébastien Thiery & Hélène Miller & Françoise Defoort & Maguelone Grateau, 2020. "Fluidised Bed Gasification of Diverse Biomass Feedstocks and Blends—An Overall Performance Study," Energies, MDPI, vol. 13(14), pages 1-19, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Long, Xiaofei & Li, Jianbo & Wu, Qi & Lu, Xiaofeng & Zhang, Yuanyuan & Li, Dongfang & Jeon, Chung-Hwan & Zhang, Dongke, 2024. "Inhibiting agglomeration of bed particles in CFB burning high-alkali fuel: Experiment, mechanisms and criteria for recirculating bottom ash or selecting alternative bed materials," Energy, Elsevier, vol. 289(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2019:i:1:p:56-:d:300343. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.