IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2019i1p55-d300323.html
   My bibliography  Save this article

Estimation of Energy and Emissions Properties of Waste from Various Species of Mint in the Herbal Products Industry

Author

Listed:
  • Grzegorz Maj

    (Department of Power Engineering and Transportation, University of Life Sciences in Lublin, Gleboka 28, 20-612 Lublin, Poland)

  • Agnieszka Najda

    (Department of Vegetable Crops and Medicinal Plants, University of Life Sciences in Lublin, Akademicka 15, 20-920 Lublin, Poland)

  • Kamila Klimek

    (Department of Applied Mathematics and Computer Science, University of Life Sciences in Lublin, Gleboka 28, 20-612 Lublin, Poland)

  • Sebastian Balant

    (Department of Vegetable Crops and Medicinal Plants, University of Life Sciences in Lublin, Akademicka 15, 20-920 Lublin, Poland)

Abstract

The paper presents the results of research on the physicochemical properties of plant biomass consisting of four mint species, these being Mentha × piperita L. var. citrata Ehrh.—‘Bergamot’, Mentha × rotundifolia L., Mentha spicata L., and Mentha crispa L. The research conducted consisted of the technical analysis of biofuels—determining the heat of combustion and the calorific value of the material under study, and the content of ash, volatile compounds, and humidity. In addition, elemental analysis was carried out for the biomass under study by determining the content of carbon, hydrogen, nitrogen, and sulfur. The research demonstrated that Mentha × piperita L. var. citrata Ehrh.—‘Bergamot’ had the highest energy potential with a gross calorific value of 16.96 MJ·kg −1 , and a net calorific value of 15.60 MJ·kg −1 . Among the tested materials, Mentha × rotundifolia L. had the lowest content of ash at 7.23%, nitrogen at 0.23%, and sulfur at 0.03%, and at the same time had the highest content of volatile fraction at 70.36%. When compared to hard coal, the estimated emission factors indicated a CO reduction of 29–32%, CO 2 reduction of 28–31%, NO x reduction of 40–80%, SO 2 reduction of 92–98%, and dust reduction of 45–61%, depending on the type of biomass used.

Suggested Citation

  • Grzegorz Maj & Agnieszka Najda & Kamila Klimek & Sebastian Balant, 2019. "Estimation of Energy and Emissions Properties of Waste from Various Species of Mint in the Herbal Products Industry," Energies, MDPI, vol. 13(1), pages 1-13, December.
  • Handle: RePEc:gam:jeners:v:13:y:2019:i:1:p:55-:d:300323
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/1/55/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/1/55/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Osman, Ahmed I., 2020. "Mass spectrometry study of lignocellulosic biomass combustion and pyrolysis with NOx removal," Renewable Energy, Elsevier, vol. 146(C), pages 484-496.
    2. Grzegorz Maj, 2018. "Emission Factors and Energy Properties of Agro and Forest Biomass in Aspect of Sustainability of Energy Sector," Energies, MDPI, vol. 11(6), pages 1-12, June.
    3. Erdal, Gülistan & Esengün, Kemal & Erdal, Hilmi & Gündüz, Orhan, 2007. "Energy use and economical analysis of sugar beet production in Tokat province of Turkey," Energy, Elsevier, vol. 32(1), pages 35-41.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Grzegorz Zając & Grzegorz Maj & Joanna Szyszlak-Bargłowicz & Tomasz Słowik & Paweł Krzaczek & Wojciech Gołębiowski & Marcin Dębowski, 2020. "Evaluation of the Properties and Usefulness of Ashes from the Corn Grain Drying Process Biomass," Energies, MDPI, vol. 13(5), pages 1-16, March.
    2. Alves, José Luiz Francisco & da Silva, Jean Constantino Gomes & Mumbach, Guilherme Davi & Domenico, Michele Di & da Silva Filho, Valdemar Francisco & de Sena, Rennio Felix & Machado, Ricardo Antonio F, 2020. "Insights into the bioenergy potential of jackfruit wastes considering their physicochemical properties, bioenergy indicators, combustion behaviors, and emission characteristics," Renewable Energy, Elsevier, vol. 155(C), pages 1328-1338.
    3. A. Silveira, Edgar & Santanna Chaves, Bruno & Macedo, Lucélia & Ghesti, Grace F. & Evaristo, Rafael B.W. & Cruz Lamas, Giulia & Luz, Sandra M. & Protásio, Thiago de Paula & Rousset, Patrick, 2023. "A hybrid optimization approach towards energy recovery from torrefied waste blends," Renewable Energy, Elsevier, vol. 212(C), pages 151-165.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nives Jovičić & Alan Antonović & Ana Matin & Suzana Antolović & Sanja Kalambura & Tajana Krička, 2022. "Biomass Valorization of Walnut Shell for Liquefaction Efficiency," Energies, MDPI, vol. 15(2), pages 1-13, January.
    2. Kit Wayne Chew & Shir Reen Chia & Hong-Wei Yen & Saifuddin Nomanbhay & Yeek-Chia Ho & Pau Loke Show, 2019. "Transformation of Biomass Waste into Sustainable Organic Fertilizers," Sustainability, MDPI, vol. 11(8), pages 1-19, April.
    3. Gheorghe Lazaroiu & Lucian Mihaescu & Gabriel Negreanu & Constantin Pana & Ionel Pisa & Alexandru Cernat & Dana-Alexandra Ciupageanu, 2018. "Experimental Investigations of Innovative Biomass Energy Harnessing Solutions," Energies, MDPI, vol. 11(12), pages 1-18, December.
    4. Ghatrehsamani, Shirin & Ebrahimi, Rahim & Kazi, Salim Newaz & Badarudin Badry, Ahmad & Sadeghinezhad, Emad, 2016. "Optimization model of peach production relevant to input energies – Yield function in Chaharmahal va Bakhtiari province, Iran," Energy, Elsevier, vol. 99(C), pages 315-321.
    5. Naeimeh Samavatean & Shahin Rafiee & Hossein Mobli, 2011. "An Analysis of Energy Use and Estimation of a Mechanization Index of Garlic Production in Iran," Journal of Agricultural Science, Canadian Center of Science and Education, vol. 3(2), pages 198-198, June.
    6. Kung, Chih-Chun & McCarl, Bruce A. & Cao, Xiaoyong, 2013. "Economics of pyrolysis-based energy production and biochar utilization: A case study in Taiwan," Energy Policy, Elsevier, vol. 60(C), pages 317-323.
    7. Ali Mostafaeipour & Mohammad Bagher Fakhrzad & Sajad Gharaat & Mehdi Jahangiri & Joshuva Arockia Dhanraj & Shahab S. Band & Alibek Issakhov & Amir Mosavi, 2020. "Machine Learning for Prediction of Energy in Wheat Production," Agriculture, MDPI, vol. 10(11), pages 1-19, October.
    8. Kaur, Navneet & Vashist, Krishan Kumar & Brar, A.S., 2021. "Energy and productivity analysis of maize based crop sequences compared to rice-wheat system under different moisture regimes," Energy, Elsevier, vol. 216(C).
    9. Vijay Pratap & Anchal Dass & Shiva Dhar & Subhash Babu & Vinod Kumar Singh & Raj Singh & Prameela Krishnan & Susama Sudhishri & Arti Bhatia & Sarvendra Kumar & Anil Kumar Choudhary & Renu Singh & Pram, 2022. "Co-Implementation of Tillage, Precision Nitrogen, and Water Management Enhances Water Productivity, Economic Returns, and Energy-Use Efficiency of Direct-Seeded Rice," Sustainability, MDPI, vol. 14(18), pages 1-20, September.
    10. Barut, Zeliha Bereket & Ertekin, Can & Karaagac, Hasan Ali, 2011. "Tillage effects on energy use for corn silage in Mediterranean Coastal of Turkey," Energy, Elsevier, vol. 36(9), pages 5466-5475.
    11. Plappally, A.K. & Lienhard V, J.H., 2012. "Energy requirements for water production, treatment, end use, reclamation, and disposal," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4818-4848.
    12. Joanna Šukasiewicz & Bartłomiej Bajan, 2024. "Farm Gate Energy Intensity of Food Production in Poland - Considering the Physical and Economic Aspects of Production," International Journal of Energy Economics and Policy, Econjournals, vol. 14(4), pages 216-225, July.
    13. Mohammadi, Ali & Rafiee, Shahin & Mohtasebi, Seyed Saeid & Mousavi Avval, Seyed Hashem & Rafiee, Hamed, 2011. "Energy efficiency improvement and input cost saving in kiwifruit production using Data Envelopment Analysis approach," Renewable Energy, Elsevier, vol. 36(9), pages 2573-2579.
    14. Al-Hwaiti, Mohammad S. & Alsbou, Eid M. & Al Haddad, Rawan M. & Osman, Ahmed I. & Jrai, Ahmed Abu & Al-Muhtaseb, Ala’a H. & Hasan, Ahmad O. & Morgan, Kevin & El-Sayed, El-Sayed M. & Al-Fatesh, Ahmed S, 2020. "Spatio-temporal analyses of extracted citrullus colocynthis seeds (Handal seed oil) as biofuel in internal combustion engine," Renewable Energy, Elsevier, vol. 166(C), pages 234-244.
    15. Karakaya, Ahmet & Özilgen, Mustafa, 2011. "Energy utilization and carbon dioxide emission in the fresh, paste, whole-peeled, diced, and juiced tomato production processes," Energy, Elsevier, vol. 36(8), pages 5101-5110.
    16. Pishgar-Komleh, Seyyed Hassan & Keyhani, Alireza & Mostofi-Sarkari, Mohammad Reza & Jafari, Ali, 2012. "Energy and economic analysis of different seed corn harvesting systems in Iran," Energy, Elsevier, vol. 43(1), pages 469-476.
    17. Özgöz, Engin & Altuntaş, Ebubekir & Asiltürk, Murat, 2017. "Effects of soil tillage on energy use in potato farming in Central Anatolia of Turkey," Energy, Elsevier, vol. 141(C), pages 1517-1523.
    18. Houshyar, Ehsan & Azadi, Hossein & Almassi, Morteza & Sheikh Davoodi, Mohammad Javad & Witlox, Frank, 2012. "Sustainable and efficient energy consumption of corn production in Southwest Iran: Combination of multi-fuzzy and DEA modeling," Energy, Elsevier, vol. 44(1), pages 672-681.
    19. Galina Nyashina & Pavel Strizhak, 2018. "Impact of Forest Fuels on Gas Emissions in Coal Slurry Fuel Combustion," Energies, MDPI, vol. 11(9), pages 1-16, September.
    20. Mousavi-Avval, Seyed Hashem & Rafiee, Shahin & Jafari, Ali & Mohammadi, Ali, 2011. "Improving energy use efficiency of canola production using data envelopment analysis (DEA) approach," Energy, Elsevier, vol. 36(5), pages 2765-2772.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2019:i:1:p:55-:d:300323. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.