IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i18p11234-d909445.html
   My bibliography  Save this article

Co-Implementation of Tillage, Precision Nitrogen, and Water Management Enhances Water Productivity, Economic Returns, and Energy-Use Efficiency of Direct-Seeded Rice

Author

Listed:
  • Vijay Pratap

    (Division of Agronomy, ICAR-Indian Agricultural Research Institute, Pusa, New Delhi 110-012, India)

  • Anchal Dass

    (Division of Agronomy, ICAR-Indian Agricultural Research Institute, Pusa, New Delhi 110-012, India)

  • Shiva Dhar

    (Division of Agronomy, ICAR-Indian Agricultural Research Institute, Pusa, New Delhi 110-012, India)

  • Subhash Babu

    (Division of Agronomy, ICAR-Indian Agricultural Research Institute, Pusa, New Delhi 110-012, India)

  • Vinod Kumar Singh

    (Central Research Institute for Dryland Agriculture, Santoshnagar, Hyderabad, Telangana 500-059, India)

  • Raj Singh

    (Division of Agronomy, ICAR-Indian Agricultural Research Institute, Pusa, New Delhi 110-012, India)

  • Prameela Krishnan

    (Division of Agricultural Physics, ICAR-Indian Agricultural Research Institute, Pusa, New Delhi 110-012, India)

  • Susama Sudhishri

    (Water Technology Centre, ICAR-Indian Agricultural Research Institute, Pusa, New Delhi 110-012, India)

  • Arti Bhatia

    (Environment Science, ICAR-Indian Agricultural Research Institute, Pusa, New Delhi 110-012, India)

  • Sarvendra Kumar

    (Division of Soil Science & Agricultural Chemistry, ICAR-Indian Agricultural Research Institute, Pusa, New Delhi 110-012, India)

  • Anil Kumar Choudhary

    (Division of Crop Production, ICAR-Central Potato Research Institute, Shimla 171-001, India)

  • Renu Singh

    (Environment Science, ICAR-Indian Agricultural Research Institute, Pusa, New Delhi 110-012, India)

  • Pramod Kumar

    (Division of Agricultural Economics, ICAR-Indian Agricultural Research Institute, Pusa, New Delhi 110-012, India)

  • Susheel Kumar Sarkar

    (Division of Design of Experiments, ICAR-Indian Agricultural Statistics Research Institute, Pusa, New Delhi 110-012, India)

  • Sunil Kumar Verma

    (Department of Agronomy, IAS, BHU, Varanasi 221-005, India)

  • Kavita Kumari

    (Division of Agronomy, ICAR-Indian Agricultural Research Institute, Pusa, New Delhi 110-012, India)

  • Aye Aye San

    (Division of Agronomy, ICAR-Indian Agricultural Research Institute, Pusa, New Delhi 110-012, India)

Abstract

The sustainability of conventional rice ( Oryza sativa L.) production systems is often questioned due to the over-mining of groundwater and environmental degradation. This has led to the development of cost-effective, resource-efficient, and environmentally clean rice production systems by optimizing water and nitrogen (N) use. Hence, a 2-year field study (2019 and 2020) was conducted at the ICAR–Indian Agricultural Research Institute, New Delhi, to assess the effect of precision N and water management strategies on growth, land, and water productivity, as well as energy-use efficiency in scented direct-seeded rice (DSR). Two crop establishment methods, conventional-till DSR (CT-DSR) and zero-till DSR (ZT-DSR) along with three irrigation scenarios (assured irrigation (irrigation after 72 h of the drying of surface water), irrigation at 20% depletion of available soil moisture (DASM), and 40% DASM+Si (80 kg ha −1 )) were assigned to the main plots; three N management options, a 100% recommended dose of N (RDN): 150 kg ha −1 ; Nutrient Expert® (NE®)+leaf color chart (LCC) and NE®+soil plant analysis development (SPAD) meter-based N management were allocated to sub-plots in a three-time replicated split-plot design. The CT-DSR produced 1.4, 11.8, and 89.4, and 2.4, 18.8, and 152.8% more grain yields, net returns, and net energy in 2019 and 2020, respectively, over ZT-DSR. However, ZT-DSR recorded 8.3 and 10.7% higher water productivity (WP) than CT-DSR. Assured irrigation resulted in 10.6, 16.1 16.9, and 8.1 and 12.3, 21.8 20.6, and 6.7% higher grain yields, net returns, net energy, and WP in 2019 and 2020, respectively, over irrigation at 20% DASM. Further, NE®+SPAD meter-based N management saved 27.1% N and recorded 9.6, 18.3, 16.8, and 8.3, and 8.8, 21.7, 19.9, and 10.7% greater grain yields, net returns, net energy, and WP over RDN in 2019 and 2020, respectively. Thus, the study suggested that the NE®+SPAD-based N application is beneficial over RDN for productivity, resource-use efficiency, and N-saving (~32 kg ha −1 ) both in CA-based and conventionally cultivated DSR. This study also suggests irrigating DSR after 72 h of the drying of surface water; however, under obviously limited water supplies, irrigation can be delayed until 20% DASM, thus saving two irrigations, which can be diverted to additional DSR areas.

Suggested Citation

  • Vijay Pratap & Anchal Dass & Shiva Dhar & Subhash Babu & Vinod Kumar Singh & Raj Singh & Prameela Krishnan & Susama Sudhishri & Arti Bhatia & Sarvendra Kumar & Anil Kumar Choudhary & Renu Singh & Pram, 2022. "Co-Implementation of Tillage, Precision Nitrogen, and Water Management Enhances Water Productivity, Economic Returns, and Energy-Use Efficiency of Direct-Seeded Rice," Sustainability, MDPI, vol. 14(18), pages 1-20, September.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:18:p:11234-:d:909445
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/18/11234/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/18/11234/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zangeneh, Morteza & Omid, Mahmoud & Akram, Asadollah, 2010. "A comparative study on energy use and cost analysis of potato production under different farming technologies in Hamadan province of Iran," Energy, Elsevier, vol. 35(7), pages 2927-2933.
    2. Mohammadi, Ali & Rafiee, Shahin & Mohtasebi, Seyed Saeid & Rafiee, Hamed, 2010. "Energy inputs – yield relationship and cost analysis of kiwifruit production in Iran," Renewable Energy, Elsevier, vol. 35(5), pages 1071-1075.
    3. Jackson, Tamara M. & Khan, Shahbaz & Hafeez, Mohsin, 2010. "A comparative analysis of water application and energy consumption at the irrigated field level," Agricultural Water Management, Elsevier, vol. 97(10), pages 1477-1485, October.
    4. Parihar, C.M. & Jat, S.L. & Singh, A.K. & Majumdar, K. & Jat, M.L. & Saharawat, Y.S. & Pradhan, S. & Kuri, B.R., 2017. "Bio-energy, water-use efficiency and economics of maize-wheat-mungbean system under precision-conservation agriculture in semi-arid agro-ecosystem," Energy, Elsevier, vol. 119(C), pages 245-256.
    5. Erdal, Gülistan & Esengün, Kemal & Erdal, Hilmi & Gündüz, Orhan, 2007. "Energy use and economical analysis of sugar beet production in Tokat province of Turkey," Energy, Elsevier, vol. 32(1), pages 35-41.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pishgar-Komleh, Seyyed Hassan & Keyhani, Alireza & Mostofi-Sarkari, Mohammad Reza & Jafari, Ali, 2012. "Energy and economic analysis of different seed corn harvesting systems in Iran," Energy, Elsevier, vol. 43(1), pages 469-476.
    2. Pishgar Komleh, S.H. & Keyhani, A. & Rafiee, Sh. & Sefeedpary, P., 2011. "Energy use and economic analysis of corn silage production under three cultivated area levels in Tehran province of Iran," Energy, Elsevier, vol. 36(5), pages 3335-3341.
    3. Elahi, Ehsan & Weijun, Cui & Jha, Sunil Kumar & Zhang, Huiming, 2019. "Estimation of realistic renewable and non-renewable energy use targets for livestock production systems utilising an artificial neural network method: A step towards livestock sustainability," Energy, Elsevier, vol. 183(C), pages 191-204.
    4. Asgharipour, Mohammad Reza & Mondani, Farzad & Riahinia, Shahram, 2012. "Energy use efficiency and economic analysis of sugar beet production system in Iran: A case study in Khorasan Razavi province," Energy, Elsevier, vol. 44(1), pages 1078-1084.
    5. Soltani, Shiva & Mosavi, Seyed Habibollah & Saghaian, Sayed H. & Azhdari, Somayeh & Alamdarlo, Hamed N. & Khalilian, Sadegh, 2023. "Climate change and energy use efficiency in arid and semiarid agricultural areas: A case study of Hamadan-Bahar plain in Iran," Energy, Elsevier, vol. 268(C).
    6. Ghatrehsamani, Shirin & Ebrahimi, Rahim & Kazi, Salim Newaz & Badarudin Badry, Ahmad & Sadeghinezhad, Emad, 2016. "Optimization model of peach production relevant to input energies – Yield function in Chaharmahal va Bakhtiari province, Iran," Energy, Elsevier, vol. 99(C), pages 315-321.
    7. Ali Mostafaeipour & Mohammad Bagher Fakhrzad & Sajad Gharaat & Mehdi Jahangiri & Joshuva Arockia Dhanraj & Shahab S. Band & Alibek Issakhov & Amir Mosavi, 2020. "Machine Learning for Prediction of Energy in Wheat Production," Agriculture, MDPI, vol. 10(11), pages 1-19, October.
    8. Barut, Zeliha Bereket & Ertekin, Can & Karaagac, Hasan Ali, 2011. "Tillage effects on energy use for corn silage in Mediterranean Coastal of Turkey," Energy, Elsevier, vol. 36(9), pages 5466-5475.
    9. Plappally, A.K. & Lienhard V, J.H., 2012. "Energy requirements for water production, treatment, end use, reclamation, and disposal," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4818-4848.
    10. Mohammadi, Ali & Rafiee, Shahin & Mohtasebi, Seyed Saeid & Mousavi Avval, Seyed Hashem & Rafiee, Hamed, 2011. "Energy efficiency improvement and input cost saving in kiwifruit production using Data Envelopment Analysis approach," Renewable Energy, Elsevier, vol. 36(9), pages 2573-2579.
    11. Özgöz, Engin & Altuntaş, Ebubekir & Asiltürk, Murat, 2017. "Effects of soil tillage on energy use in potato farming in Central Anatolia of Turkey," Energy, Elsevier, vol. 141(C), pages 1517-1523.
    12. Houshyar, Ehsan & Azadi, Hossein & Almassi, Morteza & Sheikh Davoodi, Mohammad Javad & Witlox, Frank, 2012. "Sustainable and efficient energy consumption of corn production in Southwest Iran: Combination of multi-fuzzy and DEA modeling," Energy, Elsevier, vol. 44(1), pages 672-681.
    13. Yongqiang Zhang & Hao Sun & Maosheng Ge & Hang Zhao & Yifan Hu & Changyue Cui & Zhibin Wu, 2023. "Difference in Energy Input and Output in Agricultural Production under Surface Irrigation and Water-Saving Irrigation: A Case Study of Kiwi Fruit in Shaanxi," Sustainability, MDPI, vol. 15(4), pages 1-18, February.
    14. Khoshnevisan, Benyamin & Rafiee, Shahin & Omid, Mahmoud & Yousefi, Marziye & Movahedi, Mehran, 2013. "Modeling of energy consumption and GHG (greenhouse gas) emissions in wheat production in Esfahan province of Iran using artificial neural networks," Energy, Elsevier, vol. 52(C), pages 333-338.
    15. Gómez, Antonio & Dopazo, César & Fueyo, Norberto, 2014. "The causes of the high energy intensity of the Kazakh economy: A characterization of its energy system," Energy, Elsevier, vol. 71(C), pages 556-568.
    16. Singh, Pritpal & Sandhu, Amarjeet Singh, 2023. "Energy budgeting and economics of potato (Solanum tuberosum L.) cultivation under different sowing methods in north-western India," Energy, Elsevier, vol. 269(C).
    17. Stanisław Bielski & Renata Marks-Bielska & Paweł Wiśniewski, 2022. "Investigation of Energy and Economic Balance and GHG Emissions in the Production of Different Cultivars of Buckwheat ( Fagopyrum esculentum Moench): A Case Study in Northeastern Poland," Energies, MDPI, vol. 16(1), pages 1-24, December.
    18. Kazemi, Hossein & Kamkar, Behnam & Lakzaei, Somayeh & Badsar, Meysam & Shahbyki, Malihe, 2015. "Energy flow analysis for rice production in different geographical regions of Iran," Energy, Elsevier, vol. 84(C), pages 390-396.
    19. Khoshnevisan, Benyamin & Rafiee, Shahin & Omid, Mahmoud & Mousazadeh, Hossein & Rajaeifar, Mohammad Ali, 2014. "Application of artificial neural networks for prediction of output energy and GHG emissions in potato production in Iran," Agricultural Systems, Elsevier, vol. 123(C), pages 120-127.
    20. Hamedani, Sara Rajabi & Shabani, Zeinab & Rafiee, Shahin, 2011. "Energy inputs and crop yield relationship in potato production in Hamadan province of Iran," Energy, Elsevier, vol. 36(5), pages 2367-2371.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:18:p:11234-:d:909445. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.