IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v210y2018icp1299-1309.html
   My bibliography  Save this article

Optimizing sheddable and shiftable residential electricity consumption by incentivized peak and off-peak credit function approach

Author

Listed:
  • Ampimah, Benjamin Chris
  • Sun, Mei
  • Han, Dun
  • Wang, Xueyin

Abstract

Many current studies on smart grid in electricity market are indicative of the key role it plays in electricity generation, distribution, retailing and end-user management. Demand response programs (DRPs) can be used to lower high energy prices in wholesale electricity markets, and ensure the security of power systems when at risk. The concern of most researchers in this field is to further unearth the potential of smart grid in the direction of demand response (DR) through enhanced demand side management (DSM) centering on the behavior of the end-user. Our model proposes a more effective way in using incentive based demand response program to help residential customers derive more benefits from smart grid. The constrained non-linear programming (CNLP) model optimizes residential consumption of electricity by shaving of load at peak and increasing of load at off-peak to help generators reduce production cost at peak times and increase revenue at of off-peaks. The model uses a credit function to regulate consumption and reward end-users for load shedding and load shifting at peaks and also at off-peaks reward end-users for increasing load. The simulated results show that, high consumption appliances are best used at dawn, midday, and at night, if consumers want to cut down cost. The corresponding effect is that, generating and distribution companies derive the right revenue from their investments by not producing beyond their capacity during peaks at high cost and maintain constant power supply in and environmentally friendly manner.

Suggested Citation

  • Ampimah, Benjamin Chris & Sun, Mei & Han, Dun & Wang, Xueyin, 2018. "Optimizing sheddable and shiftable residential electricity consumption by incentivized peak and off-peak credit function approach," Applied Energy, Elsevier, vol. 210(C), pages 1299-1309.
  • Handle: RePEc:eee:appene:v:210:y:2018:i:c:p:1299-1309
    DOI: 10.1016/j.apenergy.2017.07.097
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261917309716
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2017.07.097?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Siano, Pierluigi, 2014. "Demand response and smart grids—A survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 461-478.
    2. Bartusch, Cajsa & Alvehag, Karin, 2014. "Further exploring the potential of residential demand response programs in electricity distribution," Applied Energy, Elsevier, vol. 125(C), pages 39-59.
    3. Doostizadeh, Meysam & Ghasemi, Hassan, 2012. "A day-ahead electricity pricing model based on smart metering and demand-side management," Energy, Elsevier, vol. 46(1), pages 221-230.
    4. Koliou, Elta & Bartusch, Cajsa & Picciariello, Angela & Eklund, Tobias & Söder, Lennart & Hakvoort, Rudi A., 2015. "Quantifying distribution-system operators' economic incentives to promote residential demand response," Utilities Policy, Elsevier, vol. 35(C), pages 28-40.
    5. Aghaei, Jamshid & Alizadeh, Mohammad-Iman & Siano, Pierluigi & Heidari, Alireza, 2016. "Contribution of emergency demand response programs in power system reliability," Energy, Elsevier, vol. 103(C), pages 688-696.
    6. Venkatesan, Naveen & Solanki, Jignesh & Solanki, Sarika Khushalani, 2012. "Residential Demand Response model and impact on voltage profile and losses of an electric distribution network," Applied Energy, Elsevier, vol. 96(C), pages 84-91.
    7. Moghaddam, M. Parsa & Abdollahi, A. & Rashidinejad, M., 2011. "Flexible demand response programs modeling in competitive electricity markets," Applied Energy, Elsevier, vol. 88(9), pages 3257-3269.
    8. Joung, Manho & Kim, Jinho, 2013. "Assessing demand response and smart metering impacts on long-term electricity market prices and system reliability," Applied Energy, Elsevier, vol. 101(C), pages 441-448.
    9. Bartusch, Cajsa & Wallin, Fredrik & Odlare, Monica & Vassileva, Iana & Wester, Lars, 2011. "Introducing a demand-based electricity distribution tariff in the residential sector: Demand response and customer perception," Energy Policy, Elsevier, vol. 39(9), pages 5008-5025, September.
    10. Derakhshan, Ghasem & Shayanfar, Heidar Ali & Kazemi, Ahad, 2016. "The optimization of demand response programs in smart grids," Energy Policy, Elsevier, vol. 94(C), pages 295-306.
    11. Torriti, Jacopo & Hassan, Mohamed G. & Leach, Matthew, 2010. "Demand response experience in Europe: Policies, programmes and implementation," Energy, Elsevier, vol. 35(4), pages 1575-1583.
    12. Strbac, Goran, 2008. "Demand side management: Benefits and challenges," Energy Policy, Elsevier, vol. 36(12), pages 4419-4426, December.
    13. Spees, Kathleen & Lave, Lester B., 2007. "Demand Response and Electricity Market Efficiency," The Electricity Journal, Elsevier, vol. 20(3), pages 69-85, April.
    14. de Joode, J. & Jansen, J.C. & van der Welle, A.J. & Scheepers, M.J.J., 2009. "Increasing penetration of renewable and distributed electricity generation and the need for different network regulation," Energy Policy, Elsevier, vol. 37(8), pages 2907-2915, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ti, Shuguang & Kuang, Min & Wang, Haopeng & Xu, Guangyin & Niu, Cong & Liu, Yannan & Wang, Zhenfeng, 2020. "Experimental combustion characteristics and NOx emissions at 50% of the full load for a 600-MWe utility boiler: Effects of the coal feed rate for various mills," Energy, Elsevier, vol. 196(C).
    2. Nur Mohammad & Yateendra Mishra, 2018. "The Role of Demand Response Aggregators and the Effect of GenCos Strategic Bidding on the Flexibility of Demand," Energies, MDPI, vol. 11(12), pages 1-22, November.
    3. Obara, Shin'ya & Hamanaka, Ryo & El-Sayed, Abeer Galal, 2019. "Design methods for microgrids to address seasonal energy availability – A case study of proposed Showa Antarctic Station retrofits," Applied Energy, Elsevier, vol. 236(C), pages 711-727.
    4. Pinrolinvic D. K. Manembu & Angreine Kewo & Rasmus Bramstoft & Per Sieverts Nielsen, 2023. "A Systematicity Review on Residential Electricity Load-Shifting at the Appliance Level," Energies, MDPI, vol. 16(23), pages 1-22, November.
    5. Bugaje, Bilal & Rutherford, Peter & Clifford, Mike, 2022. "Convenience in a residence with demand response: A system dynamics simulation model," Applied Energy, Elsevier, vol. 314(C).
    6. Amit Shewale & Anil Mokhade & Nitesh Funde & Neeraj Dhanraj Bokde, 2020. "An Overview of Demand Response in Smart Grid and Optimization Techniques for Efficient Residential Appliance Scheduling Problem," Energies, MDPI, vol. 13(16), pages 1-31, August.
    7. Simona-Vasilica Oprea & Adela Bâra & Adina Ileana Uță & Alexandru Pîrjan & George Căruțașu, 2018. "Analyses of Distributed Generation and Storage Effect on the Electricity Consumption Curve in the Smart Grid Context," Sustainability, MDPI, vol. 10(7), pages 1-25, July.
    8. Malik, Anam & Haghdadi, Navid & MacGill, Iain & Ravishankar, Jayashri, 2019. "Appliance level data analysis of summer demand reduction potential from residential air conditioner control," Applied Energy, Elsevier, vol. 235(C), pages 776-785.
    9. Gao, Jianwei & Ma, Zeyang & Guo, Fengjia, 2019. "The influence of demand response on wind-integrated power system considering participation of the demand side," Energy, Elsevier, vol. 178(C), pages 723-738.
    10. Jiang, Yu & Lee, Byoung-Hwa & Oh, Dong-Hun & Jeon, Chung-Hwan, 2022. "Influence of various air-staging on combustion and NOX emission characteristics in a tangentially fired boiler under the 50% load condition," Energy, Elsevier, vol. 244(PB).
    11. Zhao, Liyuan & Yang, Ting & Li, Wei & Zomaya, Albert Y., 2022. "Deep reinforcement learning-based joint load scheduling for household multi-energy system," Applied Energy, Elsevier, vol. 324(C).
    12. Amit Shewale & Anil Mokhade & Nitesh Funde & Neeraj Dhanraj Bokde, 2022. "A Survey of Efficient Demand-Side Management Techniques for the Residential Appliance Scheduling Problem in Smart Homes," Energies, MDPI, vol. 15(8), pages 1-34, April.
    13. Kong, Xiangyu & Kong, Deqian & Yao, Jingtao & Bai, Linquan & Xiao, Jie, 2020. "Online pricing of demand response based on long short-term memory and reinforcement learning," Applied Energy, Elsevier, vol. 271(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Derakhshan, Ghasem & Shayanfar, Heidar Ali & Kazemi, Ahad, 2016. "The optimization of demand response programs in smart grids," Energy Policy, Elsevier, vol. 94(C), pages 295-306.
    2. Cortés-Arcos, Tomás & Bernal-Agustín, José L. & Dufo-López, Rodolfo & Lujano-Rojas, Juan M. & Contreras, Javier, 2017. "Multi-objective demand response to real-time prices (RTP) using a task scheduling methodology," Energy, Elsevier, vol. 138(C), pages 19-31.
    3. Koliou, Elta & Bartusch, Cajsa & Picciariello, Angela & Eklund, Tobias & Söder, Lennart & Hakvoort, Rudi A., 2015. "Quantifying distribution-system operators' economic incentives to promote residential demand response," Utilities Policy, Elsevier, vol. 35(C), pages 28-40.
    4. Talari, Saber & Shafie-khah, Miadreza & Osório, Gerardo J. & Aghaei, Jamshid & Catalão, João P.S., 2018. "Stochastic modelling of renewable energy sources from operators' point-of-view: A survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1953-1965.
    5. Boßmann, Tobias & Eser, Eike Johannes, 2016. "Model-based assessment of demand-response measures—A comprehensive literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1637-1656.
    6. Alasseri, Rajeev & Tripathi, Ashish & Joji Rao, T. & Sreekanth, K.J., 2017. "A review on implementation strategies for demand side management (DSM) in Kuwait through incentive-based demand response programs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 617-635.
    7. Sandoval, Diego & Goffin, Philippe & Leibundgut, Hansjürg, 2017. "How low exergy buildings and distributed electricity storage can contribute to flexibility within the demand side," Applied Energy, Elsevier, vol. 187(C), pages 116-127.
    8. Ussama Assad & Muhammad Arshad Shehzad Hassan & Umar Farooq & Asif Kabir & Muhammad Zeeshan Khan & S. Sabahat H. Bukhari & Zain ul Abidin Jaffri & Judit Oláh & József Popp, 2022. "Smart Grid, Demand Response and Optimization: A Critical Review of Computational Methods," Energies, MDPI, vol. 15(6), pages 1-36, March.
    9. Paterakis, Nikolaos G. & Erdinç, Ozan & Catalão, João P.S., 2017. "An overview of Demand Response: Key-elements and international experience," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 871-891.
    10. Zhou, Kaile & Yang, Shanlin, 2015. "Demand side management in China: The context of China’s power industry reform," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 954-965.
    11. Xu, Fang Yuan & Zhang, Tao & Lai, Loi Lei & Zhou, Hao, 2015. "Shifting Boundary for price-based residential demand response and applications," Applied Energy, Elsevier, vol. 146(C), pages 353-370.
    12. Yan, Xing & Ozturk, Yusuf & Hu, Zechun & Song, Yonghua, 2018. "A review on price-driven residential demand response," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 411-419.
    13. Dehnavi, Ehsan & Abdi, Hamdi, 2016. "Optimal pricing in time of use demand response by integrating with dynamic economic dispatch problem," Energy, Elsevier, vol. 109(C), pages 1086-1094.
    14. Davarzani, Sima & Pisica, Ioana & Taylor, Gareth A. & Munisami, Kevin J., 2021. "Residential Demand Response Strategies and Applications in Active Distribution Network Management," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    15. Eid, Cherrelle & Koliou, Elta & Valles, Mercedes & Reneses, Javier & Hakvoort, Rudi, 2016. "Time-based pricing and electricity demand response: Existing barriers and next steps," Utilities Policy, Elsevier, vol. 40(C), pages 15-25.
    16. Jiang, Bo & Farid, Amro M. & Youcef-Toumi, Kamal, 2015. "Demand side management in a day-ahead wholesale market: A comparison of industrial & social welfare approaches," Applied Energy, Elsevier, vol. 156(C), pages 642-654.
    17. Shahryari, E. & Shayeghi, H. & Mohammadi-ivatloo, B. & Moradzadeh, M., 2018. "An improved incentive-based demand response program in day-ahead and intra-day electricity markets," Energy, Elsevier, vol. 155(C), pages 205-214.
    18. Nolan, Sheila & O’Malley, Mark, 2015. "Challenges and barriers to demand response deployment and evaluation," Applied Energy, Elsevier, vol. 152(C), pages 1-10.
    19. Märkle-Huß, Joscha & Feuerriegel, Stefan & Neumann, Dirk, 2018. "Large-scale demand response and its implications for spot prices, load and policies: Insights from the German-Austrian electricity market," Applied Energy, Elsevier, vol. 210(C), pages 1290-1298.
    20. Jun Dong & Rong Li & Hui Huang, 2018. "Performance Evaluation of Residential Demand Response Based on a Modified Fuzzy VIKOR and Scalable Computing Method," Energies, MDPI, vol. 11(5), pages 1-27, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:210:y:2018:i:c:p:1299-1309. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.