IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i6p1039-d214788.html
   My bibliography  Save this article

Enthalpies of Hydrate Formation from Hydrate Formers Dissolved in Water

Author

Listed:
  • Bjørn Kvamme

    (Strategic Carbon, Vestre Holbergsallmenningen 17, 5011 Bergen, Norway)

Abstract

The international interest in the energy potential related to the huge amounts of methane trapped in the form of hydrates is rapidly increasing. Unlike conventional hydrocarbon sources these natural gas hydrate deposits are widely spread around the world. This includes countries which have limited or no conventional hydrocarbon sources, like for instance Japan. A variety of possible production methods have been proposed during the latest four decades. The pressure reduction method has been dominant in terms of research efforts and associated investments in large scale pilot test studies. Common to any feasible method for producing methane from hydrates is the need for transfer of heat. In the pressure reduction method necessary heat is normally expected to be supplied from the surrounding formation. It still remain, however, unverified whether the capacity, and heat transport capabilities of surrounding formation, will be sufficient to supply enough heat for a commercial production based on reduction in pressure. Adding heat is very costly. Addition of limited heat in critical areas (regions of potential freezing down) might be economically feasible. This requires knowledge about enthalpies of hydrate dissociation under various conditions of temperature and pressure. When hydrate is present in the pores then it is the most stable phase for water. Hydrate can then grow in the concentration range in between liquid controlled solubility concentrations, and the minimum concentration of hydrate in water needed to keep the hydrate stable. Every concentration in that range off concentrations results unique free energy and enthalpy of the formed hydrate. Similarly for hydrate dissociation towards water containing less hydrate former than the stability limit. Every outside liquid water concentration results in unique enthalpy changes for hydrate dissociation. There are presently no other available calculation approaches for enthalpy changes related to these hydrate phase transitions. The interest of using CO 2 for safe storage in the form of hydrate, and associated CH 4 release, is also increasing. The only feasible mechanism in this method involves the formation of new CO 2 hydrate, and associated release of heat which assist in dissociating the in situ CH 4 hydrate. Very limited experimental data is available for heats of formation (and dissociation), even for CH 4 . And most experimental data are incomplete in the sense that associated water/hydrate former rate are often missing or guessed. Thermodynamic conditions are frequently not precisely defined. Although measured hydrate equilibrium pressure versus temperature curves can be used there is still a need for additional models for volume changes, and ways to find other information needed. In this work we propose a simple and fairly direct scheme of calculating enthalpies of formation and dissociation using residual thermodynamics. This is feasible since also hydrate can be described by residual thermodynamics though molecular dynamics simulations. The concept is derived and explained in detail and also compared to experimental data. For enthalpy changes related to hydrate formation from water and dissolved hydrate formers we have not found experimental data to compare with. To our knowledge there are no other alternative methods available for calculating enthalpy changes for these types of hydrate phase transitions. And there are no limits in the theory for which hydrate phase transitions that can be described as long as chemical potentials for water and hydrate formers in the relevant phases are available from theoretical modeling and/or experimental information.

Suggested Citation

  • Bjørn Kvamme, 2019. "Enthalpies of Hydrate Formation from Hydrate Formers Dissolved in Water," Energies, MDPI, vol. 12(6), pages 1-19, March.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:6:p:1039-:d:214788
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/6/1039/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/6/1039/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bjørn Kvamme & Jinzhou Zhao & Na Wei & Navid Saeidi, 2020. "Hydrate—A Mysterious Phase or Just Misunderstood?," Energies, MDPI, vol. 13(4), pages 1-26, February.
    2. Bjørn Kvamme & Jinzhou Zhao & Na Wei & Wantong Sun & Navid Saeidi & Jun Pei & Tatiana Kuznetsova, 2020. "Hydrate Production Philosophy and Thermodynamic Calculations," Energies, MDPI, vol. 13(3), pages 1-34, February.
    3. Bjørn Kvamme & Jinzhou Zhao & Na Wei & Wantong Sun & Mojdeh Zarifi & Navid Saeidi & Shouwei Zhou & Tatiana Kuznetsova & Qingping Li, 2020. "Why Should We Use Residual Thermodynamics for Calculation of Hydrate Phase Transitions?," Energies, MDPI, vol. 13(16), pages 1-30, August.
    4. Na Wei & Wantong Sun & Yingfeng Meng & Jinzhou Zhao & Bjørn Kvamme & Shouwei Zhou & Liehui Zhang & Qingping Li & Yao Zhang & Lin Jiang & Haitao Li & Jun Pei, 2020. "Hydrate Formation and Decomposition Regularities in Offshore Gas Reservoir Production Pipelines," Energies, MDPI, vol. 13(1), pages 1-22, January.
    5. Bjørn Kvamme & Atanas Vasilev, 2023. "Thermodynamic Feasibility of the Black Sea CH 4 Hydrate Replacement by CO 2 Hydrate," Energies, MDPI, vol. 16(3), pages 1-29, January.
    6. Sun, Wantong & Wei, Na & Zhao, Jinzhou & Kvamme, Bjørn & Zhou, Shouwei & Zhang, Liehui & Almenningen, Stian & Kuznetsova, Tatiana & Ersland, Geir & Li, Qingping & Pei, Jun & Li, Cong & Xiong, Chenyang, 2022. "Imitating possible consequences of drilling through marine hydrate reservoir," Energy, Elsevier, vol. 239(PA).
    7. Bjørn Kvamme & Matthew Clarke, 2021. "Hydrate Phase Transition Kinetic Modeling for Nature and Industry–Where Are We and Where Do We Go?," Energies, MDPI, vol. 14(14), pages 1-47, July.
    8. Bjørn Kvamme & Richard B. Coffin & Jinzhou Zhao & Na Wei & Shouwei Zhou & Qingping Li & Navid Saeidi & Yu-Chien Chien & Derek Dunn-Rankin & Wantong Sun & Mojdeh Zarifi, 2019. "Stages in the Dynamics of Hydrate Formation and Consequences for Design of Experiments for Hydrate Formation in Sediments," Energies, MDPI, vol. 12(17), pages 1-20, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:6:p:1039-:d:214788. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.