IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i5p879-d211596.html
   My bibliography  Save this article

Sliding Mode Output Regulation for a Boost Power Converter

Author

Listed:
  • Jorge Rivera

    (CONACYT–Advanced Studies and Research Center (CINVESTAV), National Polytechnic Institute (IPN), Guadalajara Campus, Zapopan 45015, Mexico)

  • Susana Ortega-Cisneros

    (Advanced Studies and Research Center (CINVESTAV), National Polytechnic Institute (IPN), Guadalajara Campus, Zapopan 45015, Mexico)

  • Florentino Chavira

    (Ceti Unidad Colomos, Calle Nueva Escocia 1885, Providencia 5a Sección, Guadalajara 44638, Mexico)

Abstract

This work deals with the novel application of the sliding mode (discontinuous) output regulation theory to a nonlinear electrical circuit, the so-called boost power converter. This theory has excelled due to the fact that trajectory tracking plays a central role. The control of a boost power converter for the output tracking of a DC biased sinusoidal signal is a challenging problem for control engineers. The main difficulties are the computation of a proper reference signal for the inductor current, and the stabilization of the inductor current dynamics or to guarantee the correct output tracking of the capacitor voltage. With the application of the discontinuous output regulation these problems are solved in this work. Simulations and real time experiments were carried out with an unknown variation of the DC input voltage, where the good output tracking of the capacitor voltage was verified along with the stabilization of the inductor current. The discontinuous output regulation theory has proven to be a suitable tool in the output tracking for the boost power converter.

Suggested Citation

  • Jorge Rivera & Susana Ortega-Cisneros & Florentino Chavira, 2019. "Sliding Mode Output Regulation for a Boost Power Converter," Energies, MDPI, vol. 12(5), pages 1-17, March.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:5:p:879-:d:211596
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/5/879/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/5/879/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xizheng Guo & Jiaqi Yuan & Yiguo Tang & Xiaojie You, 2018. "Hardware in the Loop Real-time Simulation for the Associated Discrete Circuit Modeling Optimization Method of Power Converters," Energies, MDPI, vol. 11(11), pages 1-14, November.
    2. Abdul Rehman Yasin & Muhammad Ashraf & Aamer Iqbal Bhatti, 2018. "Fixed Frequency Sliding Mode Control of Power Converters for Improved Dynamic Response in DC Micro-Grids," Energies, MDPI, vol. 11(10), pages 1-18, October.
    3. Jaime Wladimir Zapata & Samir Kouro & Gonzalo Carrasco & Hugues Renaudineau, 2018. "Step-Up Partial Power DC-DC Converters for Two-Stage PV Systems with Interleaved Current Performance," Energies, MDPI, vol. 11(2), pages 1-11, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Raymundo Cordero & Thyago Estrabis & Gabriel Gentil & Matheus Caramalac & Walter Suemitsu & João Onofre & Moacyr Brito & Juliano dos Santos, 2022. "Tracking and Rejection of Biased Sinusoidal Signals Using Generalized Predictive Controller," Energies, MDPI, vol. 15(15), pages 1-13, August.
    2. Efrain Mendez & Alexandro Ortiz & Pedro Ponce & Israel Macias & David Balderas & Arturo Molina, 2020. "Improved MPPT Algorithm for Photovoltaic Systems Based on the Earthquake Optimization Algorithm," Energies, MDPI, vol. 13(12), pages 1-24, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abdul Rehman Yasin & Muhammad Ashraf & Aamer Iqbal Bhatti, 2019. "A Novel Filter Extracted Equivalent Control Based Fixed Frequency Sliding Mode Approach for Power Electronic Converters," Energies, MDPI, vol. 12(5), pages 1-14, March.
    2. Akram M. Abdurraqeeb & Abdullrahman A. Al-Shamma’a & Abdulaziz Alkuhayli & Abdullah M. Noman & Khaled E. Addoweesh, 2022. "RST Digital Robust Control for DC/DC Buck Converter Feeding Constant Power Load," Mathematics, MDPI, vol. 10(10), pages 1-15, May.
    3. Yu-Chen Liu & Ming-Cheng Chen & Chun-Yu Yang & Katherine A. Kim & Huang-Jen Chiu, 2018. "High-Efficiency Isolated Photovoltaic Microinverter Using Wide-Band Gap Switches for Standalone and Grid-Tied Applications," Energies, MDPI, vol. 11(3), pages 1-15, March.
    4. Mohamed Derbeli & Oscar Barambones & Jose Antonio Ramos-Hernanz & Lassaad Sbita, 2019. "Real-Time Implementation of a Super Twisting Algorithm for PEM Fuel Cell Power System," Energies, MDPI, vol. 12(9), pages 1-20, April.
    5. Kamil Khan & Ahmad Kamal & Abdul Basit & Tanvir Ahmad & Haider Ali & Anwar Ali, 2019. "Economic Load Dispatch of a Grid-Tied DC Microgrid Using the Interior Search Algorithm," Energies, MDPI, vol. 12(4), pages 1-13, February.
    6. Muhammad Awais & Abdul Rehman Yasin & Mudassar Riaz & Bilal Saqib & Saba Zia & Amina Yasin, 2021. "Robust Sliding Mode Control of a Unipolar Power Inverter," Energies, MDPI, vol. 14(17), pages 1-15, August.
    7. Nuria Novas & Alfredo Alcayde & Isabel Robalo & Francisco Manzano-Agugliaro & Francisco G. Montoya, 2020. "Energies and Its Worldwide Research," Energies, MDPI, vol. 13(24), pages 1-41, December.
    8. Jorge Luis Anderson Azzano & Jerónimo J. Moré & Paul F. Puleston, 2019. "Stability Criteria for Input Filter Design in Converters with CPL: Applications in Sliding Mode Controlled Power Systems," Energies, MDPI, vol. 12(21), pages 1-19, October.
    9. Ersan Kabalci & Aydin Boyar, 2022. "Highly Efficient Interleaved Solar Converter Controlled with Extended Kalman Filter MPPT," Energies, MDPI, vol. 15(21), pages 1-24, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:5:p:879-:d:211596. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.