IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i23p5954-d1530522.html
   My bibliography  Save this article

A GWO-Based Indirect IMC-PID Controller for DC-DC Boost Converter

Author

Listed:
  • Ashish Choubey

    (ECE Discipline, Pandit Dwarka Prasad Mishra Indian Institute of Information Technology, Design and Manufacturing, Jabalpur 482005, India)

  • Sachin Kumar Jain

    (ECE Discipline, Pandit Dwarka Prasad Mishra Indian Institute of Information Technology, Design and Manufacturing, Jabalpur 482005, India)

  • Prabin Kumar Padhy

    (ECE Discipline, Pandit Dwarka Prasad Mishra Indian Institute of Information Technology, Design and Manufacturing, Jabalpur 482005, India)

Abstract

A PID controller design using an internal model control (IMC) approach is a well-established method for controller tuning in a DC-DC boost converter. This study introduces an innovative implementation of a novel indirect Internal Model Control (IMC) strategy for PID controller design, tailored specifically for a DC-DC boost converter. While the indirect IMC approach has been documented in prior research, its application to boost converters signifies a substantial contribution to the field. The proposed method simplifies the tuning process by focusing exclusively on the plant shifting parameter ψ, thereby eliminating the need for an IMC filter. Optimal tuning is achieved through the Grey Wolf Optimization (GWO) method, which enhances the controller’s stability, robustness, and transient response in the presence of disturbances commonly encountered in boost converter operation. Extensive simulations are performed in a MATLAB Simulink environment to compare the performance of the GWO-based indirect IMC-PID controller with traditional PID and IMC-PID designs. Performance is assessed based on transient response parameters and performance indices, such as IAE, ISE, ITAE, and ITSE. Results reveal that the GWO-optimized indirect IMC-PID controller significantly outperforms conventional controllers, demonstrating enhanced servo and regulatory behaviors.

Suggested Citation

  • Ashish Choubey & Sachin Kumar Jain & Prabin Kumar Padhy, 2024. "A GWO-Based Indirect IMC-PID Controller for DC-DC Boost Converter," Energies, MDPI, vol. 17(23), pages 1-15, November.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:23:p:5954-:d:1530522
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/23/5954/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/23/5954/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jorge Rivera & Susana Ortega-Cisneros & Florentino Chavira, 2019. "Sliding Mode Output Regulation for a Boost Power Converter," Energies, MDPI, vol. 12(5), pages 1-17, March.
    2. Franciéli Lima de Sá & Domingo Ruiz-Caballero & Cleiton Dal’Agnol & William Rafhael da Silva & Samir Ahmad Mussa, 2023. "High Static Gain DC–DC Double Boost Quadratic Converter," Energies, MDPI, vol. 16(17), pages 1-24, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Efrain Mendez & Alexandro Ortiz & Pedro Ponce & Israel Macias & David Balderas & Arturo Molina, 2020. "Improved MPPT Algorithm for Photovoltaic Systems Based on the Earthquake Optimization Algorithm," Energies, MDPI, vol. 13(12), pages 1-24, June.
    2. Ahmed Darwish, 2024. "A Modular Step-Up DC/DC Converter for Electric Vehicles," Energies, MDPI, vol. 17(24), pages 1-22, December.
    3. Raymundo Cordero & Thyago Estrabis & Gabriel Gentil & Matheus Caramalac & Walter Suemitsu & João Onofre & Moacyr Brito & Juliano dos Santos, 2022. "Tracking and Rejection of Biased Sinusoidal Signals Using Generalized Predictive Controller," Energies, MDPI, vol. 15(15), pages 1-13, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:23:p:5954-:d:1530522. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.