IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i4p715-d208148.html
   My bibliography  Save this article

A Novel Multi-Element Resonant Converter with Self-Driven Synchronous Rectification

Author

Listed:
  • Jing-Yuan Lin

    (Department of Electronic Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan)

  • Yi-Feng Lin

    (Department of Electronic Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan)

  • Sih-Yi Lee

    (Department of Electronic Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan)

Abstract

This paper proposes a novel multi-element resonant converter with self-driven synchronous rectification (SR). The proposed resonant converter can achieve a zero-voltage-switching (ZVS) operation from light load to full load, meanwhile, the zero-current-switching (ZCS) can achieve rectifiers of a secondary-side. Therefore, the switching losses can be significantly reduced. Compared with an LLC resonant converter, the proposed resonant converter can be effective to decrease the circulating energy through the primary-side of the transformer to output a load and provide a wide voltage gain range for over-current protection as well as decreasing the inrush current under the start-up condition. Moreover, the proposed converter uses a simple current detection scheme to control the synchronous rectification switches. A detailed analysis and design of this novel multi-element resonant converter with self-driven synchronous rectification is described. Finally, a DC input voltage of 380-V DC and an output voltage/current of 12-V DC /54-A for the resonant converter prototype is built to verify the theoretical analysis and performance of the proposed converter.

Suggested Citation

  • Jing-Yuan Lin & Yi-Feng Lin & Sih-Yi Lee, 2019. "A Novel Multi-Element Resonant Converter with Self-Driven Synchronous Rectification," Energies, MDPI, vol. 12(4), pages 1-10, February.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:4:p:715-:d:208148
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/4/715/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/4/715/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhenxing Zhao & Qianming Xu & Yuxing Dai & Hanhang Yin, 2018. "Analysis, Design, and Implementation of Improved LLC Resonant Transformer for Efficiency Enhancement," Energies, MDPI, vol. 11(12), pages 1-19, November.
    2. Anning Yu & Xiaoping Zeng & Dong Xiong & Mi Tian & Junbing Li, 2018. "An Improved Autonomous Current-Fed Push-Pull Parallel-Resonant Inverter for Inductive Power Transfer System," Energies, MDPI, vol. 11(10), pages 1-16, October.
    3. Tianyu Zhu & Jianze Wang & Yanchao Ji & Yiqi Liu, 2018. "A Novel High Efficiency Quasi-Resonant Converter," Energies, MDPI, vol. 11(8), pages 1-14, July.
    4. Duong Tran & Nam Vu & Woojin Choi, 2018. "A Quasi-Resonant ZVZCS Phase-Shifted Full-Bridge Converter with an Active Clamp in the Secondary Side," Energies, MDPI, vol. 11(11), pages 1-21, October.
    5. A. M. Pernía & Miguel J. Prieto & Pedro J. Villegas & Juan Díaz & Juan A. Martín-Ramos, 2017. "LCC Resonant Multilevel Converter for X-ray Applications," Energies, MDPI, vol. 10(10), pages 1-16, October.
    6. Shu-huai Zhang & Yi-feng Wang & Bo Chen & Fu-qiang Han & Qing-cui Wang, 2018. "Studies on a Hybrid Full-Bridge/Half-Bridge Bidirectional CLTC Multi-Resonant DC-DC Converter with a Digital Synchronous Rectification Strategy," Energies, MDPI, vol. 11(1), pages 1-22, January.
    7. Yifeng Wang & Liang Yang & Fuqiang Han & Shijie Tu & Weiya Zhang, 2017. "A Study of Two Multi-Element Resonant DC-DC Topologies with Loss Distribution Analyses," Energies, MDPI, vol. 10(9), pages 1-18, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiaolin Wang & Ka Wai Eric Cheng & Yat Chi Fong, 2019. "Zero Current Switching Switched-Capacitors Balancing Circuit for Energy Storage Cell Equalization and Its Associated Hybrid Circuit with Classical Buck-Boost," Energies, MDPI, vol. 12(14), pages 1-15, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kyunghwan Choi & Kyung-Soo Kim & Seok-Kyoon Kim, 2019. "Proportional-Type Sensor Fault Diagnosis Algorithm for DC/DC Boost Converters Based on Disturbance Observer," Energies, MDPI, vol. 12(8), pages 1-14, April.
    2. Vu-Hai Nam & Duong-Van Tinh & Woojin Choi, 2021. "A Novel Hybrid LDC Converter Topology for the Integrated On-Board Charger of Electric Vehicles," Energies, MDPI, vol. 14(12), pages 1-18, June.
    3. Michal Frivaldsky & Branislav Hanko & Michal Prazenica & Jan Morgos, 2018. "High Gain Boost Interleaved Converters with Coupled Inductors and with Demagnetizing Circuits," Energies, MDPI, vol. 11(1), pages 1-20, January.
    4. Shuhuai Zhang & Xuezhi Wu & Ziqian Zhang & Xuejiang Zhang, 2022. "A Bidirectional DHC-LT Resonant DC-DC Converter with Research on Improved Fundamental Harmonic Analysis Considering Phase Angle of Load Impedance," Energies, MDPI, vol. 15(14), pages 1-23, July.
    5. Seok-Kyoon Kim, 2018. "Passivity-Based Robust Output Voltage Tracking Control of DC/DC Boost Converter for Wind Power Systems," Energies, MDPI, vol. 11(6), pages 1-13, June.
    6. Pedro J. Villegas & Juan A. Martín-Ramos & Juan Díaz & Juan Á. Martínez & Miguel J. Prieto & Alberto M. Pernía, 2017. "A Digitally Controlled Power Converter for an Electrostatic Precipitator," Energies, MDPI, vol. 10(12), pages 1-24, December.
    7. Ahmed H. Okilly & Namhun Kim & Jeihoon Baek, 2020. "Inrush Current Control of High Power Density DC–DC Converter," Energies, MDPI, vol. 13(17), pages 1-24, August.
    8. Chien-Chun Huang & Tsung-Lin Tsai & Yao-Ching Hsieh & Huang-Jen Chiu, 2018. "A Bilateral Zero-Voltage Switching Bidirectional DC-DC Converter with Low Switching Noise," Energies, MDPI, vol. 11(10), pages 1-18, October.
    9. Sajib Chakraborty & Hai-Nam Vu & Mohammed Mahedi Hasan & Dai-Duong Tran & Mohamed El Baghdadi & Omar Hegazy, 2019. "DC-DC Converter Topologies for Electric Vehicles, Plug-in Hybrid Electric Vehicles and Fast Charging Stations: State of the Art and Future Trends," Energies, MDPI, vol. 12(8), pages 1-43, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:4:p:715-:d:208148. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.