IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i4p613-d206186.html
   My bibliography  Save this article

Mechatronic Modeling and Frequency Analysis of the Drive Train of a Horizontal Wind Turbine

Author

Listed:
  • Igor Ansoategui

    (Department of Mechanical Engineering, Basque Country University (UPV/EHU), Nieves Cano, 12, 01006 Vitoria-Gasteiz, Spain)

  • Ekaitz Zulueta

    (Department of System Engineering and Automation Control, Basque Country University (UPV/EHU), Nieves Cano, 12, 01006 Vitoria-Gasteiz, Spain)

  • Unai Fernandez-Gamiz

    (Department of Nuclear and Fluid Mechanics, Basque Country University (UPV/EHU), Nieves Cano, 12, 01006 Vitoria-Gasteiz, Spain)

  • Jose Manuel Lopez-Guede

    (Department of System Engineering and Automation Control, Basque Country University (UPV/EHU), Nieves Cano, 12, 01006 Vitoria-Gasteiz, Spain)

Abstract

The relevance of renewable energies is undeniable, and among them, the importance of wind energy is capital. A lot of literature has been devoted to the control techniques that deal with the optimization of the energy produced, but the maintainability of the individual wind turbines and of the farms in general is also a fundamental factor to take into account. In this paper, the authors address the general problem of knowing in advance the resonance frequencies of the power system of a wind turbine, with the underlying idea being that those frequencies should be avoided and that resonances do not occur only due to mechanical phenomena, but also because of electrical phenomena that in turn are influenced by control and optimization techniques. Therefore, the availability of that information embedded in the optimization techniques that control a wind turbine is of major importance. The main purpose of this paper was accomplished through two related objectives: the first was to obtain a mechatronic model (using a lumped parameters model of two degrees of freedom) of the drive train in the Laplace domain oriented to subsequently perform the described analysis. The second was to use that model to determine analytically the number and the value of the resonance frequencies from the generator angular velocity in such a way that such information could be used by any control algorithm or even by the mechatronic system designers. We assessed through experimental validation using a real 100 kW wind turbine that these two objectives were reached, demonstrating that the different vibration modes were detected using only the generator angular velocity.

Suggested Citation

  • Igor Ansoategui & Ekaitz Zulueta & Unai Fernandez-Gamiz & Jose Manuel Lopez-Guede, 2019. "Mechatronic Modeling and Frequency Analysis of the Drive Train of a Horizontal Wind Turbine," Energies, MDPI, vol. 12(4), pages 1-14, February.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:4:p:613-:d:206186
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/4/613/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/4/613/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Asier González-González & Ismael Etxeberria-Agiriano & Ekaitz Zulueta & Fernando Oterino-Echavarri & Jose Manuel Lopez-Guede, 2014. "Pitch Based Wind Turbine Intelligent Speed Setpoint Adjustment Algorithms," Energies, MDPI, vol. 7(6), pages 1-17, June.
    2. Khakpour Nejadkhaki, Hamid & Chaudhari, Swanil & Hall, John F., 2018. "A design methodology for selecting ratios for a variable ratio gearbox used in a wind turbine with active blades," Renewable Energy, Elsevier, vol. 118(C), pages 1041-1051.
    3. Mohamed El-Hendawi & Hossam A. Gabbar & Gaber El-Saady & El-Nobi A. Ibrahim, 2018. "Control and EMS of a Grid-Connected Microgrid with Economical Analysis," Energies, MDPI, vol. 11(1), pages 1-20, January.
    4. Martins, M. & Perdana, A. & Ledesma, P. & Agneholm, E. & Carlson, O., 2007. "Validation of fixed speed wind turbine dynamic models with measured data," Renewable Energy, Elsevier, vol. 32(8), pages 1301-1316.
    5. Chizfahm, A. & Yazdi, E. Azadi & Eghtesad, M., 2018. "Dynamic modeling of vortex induced vibration wind turbines," Renewable Energy, Elsevier, vol. 121(C), pages 632-643.
    6. Santoso, Surya & Le, Ha Thu, 2007. "Fundamental time–domain wind turbine models for wind power studies," Renewable Energy, Elsevier, vol. 32(14), pages 2436-2452.
    7. Takanori Uchida, 2018. "LES Investigation of Terrain-Induced Turbulence in Complex Terrain and Economic Effects of Wind Turbine Control," Energies, MDPI, vol. 11(6), pages 1-15, June.
    8. Francesco Castellani & Davide Astolfi & Matteo Becchetti & Francesco Berno & Filippo Cianetti & Alessandro Cetrini, 2018. "Experimental and Numerical Vibrational Analysis of a Horizontal-Axis Micro-Wind Turbine," Energies, MDPI, vol. 11(2), pages 1-16, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ralf Stetter, 2020. "Approaches for Modelling the Physical Behavior of Technical Systems on the Example of Wind Turbines," Energies, MDPI, vol. 13(8), pages 1-27, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Akintayo T. Abolude & Wen Zhou, 2018. "A Comparative Computational Fluid Dynamic Study on the Effects of Terrain Type on Hub-Height Wind Aerodynamic Properties," Energies, MDPI, vol. 12(1), pages 1-14, December.
    2. Antoine Boche & Clément Foucher & Luiz Fernando Lavado Villa, 2022. "Understanding Microgrid Sustainability: A Systemic and Comprehensive Review," Energies, MDPI, vol. 15(8), pages 1-29, April.
    3. Ayman Al-Quraan & Muhannad Al-Qaisi, 2021. "Modelling, Design and Control of a Standalone Hybrid PV-Wind Micro-Grid System," Energies, MDPI, vol. 14(16), pages 1-23, August.
    4. Takanori Uchida, 2018. "Numerical Investigation of Terrain-Induced Turbulence in Complex Terrain by Large-Eddy Simulation (LES) Technique," Energies, MDPI, vol. 11(10), pages 1-15, October.
    5. Wang, Junlei & Geng, Linfeng & Ding, Lin & Zhu, Hongjun & Yurchenko, Daniil, 2020. "The state-of-the-art review on energy harvesting from flow-induced vibrations," Applied Energy, Elsevier, vol. 267(C).
    6. Robert Antonio Salas-Puente & Silvia Marzal & Raúl González-Medina & Emilio Figueres & Gabriel Garcera, 2018. "Power Management of the DC Bus Connected Converters in a Hybrid AC/DC Microgrid Tied to the Main Grid," Energies, MDPI, vol. 11(4), pages 1-22, March.
    7. Honrubia-Escribano, A. & Gómez-Lázaro, E. & Fortmann, J. & Sørensen, P. & Martin-Martinez, S., 2018. "Generic dynamic wind turbine models for power system stability analysis: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1939-1952.
    8. e Silva, Danilo P. & Félix Salles, José L. & Fardin, Jussara F. & Rocha Pereira, Maxsuel M., 2020. "Management of an island and grid-connected microgrid using hybrid economic model predictive control with weather data," Applied Energy, Elsevier, vol. 278(C).
    9. Sanna Uski & Erkka Rinne & Janne Sarsama, 2018. "Microgrid as a Cost-Effective Alternative to Rural Network Underground Cabling for Adequate Reliability," Energies, MDPI, vol. 11(8), pages 1-16, July.
    10. Xie, Da & Lu, Yupu & Sun, Junbo & Gu, Chenghong, 2017. "Small signal stability analysis for different types of PMSGs connected to the grid," Renewable Energy, Elsevier, vol. 106(C), pages 149-164.
    11. C. A. Lopez-Villalobos & O. Rodriguez-Hernandez & R. Campos-Amezcua & Guillermo Hernandez-Cruz & O. A. Jaramillo & J. L. Mendoza, 2018. "Wind Turbulence Intensity at La Ventosa, Mexico: A Comparative Study with the IEC61400 Standards," Energies, MDPI, vol. 11(11), pages 1-19, November.
    12. Francesco Castellani & Abdelgalil Eltayesh & Francesco Natili & Tommaso Tocci & Matteo Becchetti & Lorenzo Capponi & Davide Astolfi & Gianluca Rossi, 2021. "Wind Flow Characterisation over a PV Module through URANS Simulations and Wind Tunnel Optical Flow Methods," Energies, MDPI, vol. 14(20), pages 1-21, October.
    13. Takanori Uchida & Yasushi Kawashima, 2019. "New Assessment Scales for Evaluating the Degree of Risk of Wind Turbine Blade Damage Caused by Terrain-Induced Turbulence," Energies, MDPI, vol. 12(13), pages 1-27, July.
    14. Francesco Bottiglione & Giacomo Mantriota & Marco Valle, 2018. "Power-Split Hydrostatic Transmissions for Wind Energy Systems," Energies, MDPI, vol. 11(12), pages 1-15, December.
    15. Carunaiselvane, C. & Chelliah, Thanga Raj, 2017. "Present trends and future prospects of asynchronous machines in renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 1028-1041.
    16. Kusiak, Andrew & Zheng, Haiyang & Song, Zhe, 2009. "Models for monitoring wind farm power," Renewable Energy, Elsevier, vol. 34(3), pages 583-590.
    17. Takanori Uchida & Kenichiro Sugitani, 2020. "Numerical and Experimental Study of Topographic Speed-Up Effects in Complex Terrain," Energies, MDPI, vol. 13(15), pages 1-38, July.
    18. Mehrdad Tahmasebi & Jagadeesh Pasupuleti & Fatemeh Mohamadian & Mohammad Shakeri & Josep M. Guerrero & M. Reyasudin Basir Khan & Muhammad Shahzad Nazir & Amir Safari & Najmeh Bazmohammadi, 2021. "Optimal Operation of Stand-Alone Microgrid Considering Emission Issues and Demand Response Program Using Whale Optimization Algorithm," Sustainability, MDPI, vol. 13(14), pages 1-22, July.
    19. Jose R Sicchar & Carlos T. Da Costa & Jose R. Silva & Raimundo C. Oliveira & Werbeston D. Oliveira, 2018. "A Load-Balance System Design of Microgrid Cluster Based on Hierarchical Petri Nets," Energies, MDPI, vol. 11(12), pages 1-30, November.
    20. Mohd Zin, Abdullah Asuhaimi B. & Pesaran H.A., Mahmoud & Khairuddin, Azhar B. & Jahanshaloo, Leila & Shariati, Omid, 2013. "An overview on doubly fed induction generators′ controls and contributions to wind based electricity generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 692-708.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:4:p:613-:d:206186. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.