IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i3p568-d205164.html
   My bibliography  Save this article

HIRA Model for Short-Term Electricity Price Forecasting

Author

Listed:
  • Marin Cerjan

    (HEP Trade Ltd., Ulica grada Vukovara 37, 10000 Zagreb, Croatia)

  • Ana Petričić

    (Combis, Hektorovićeva 2, 10000 Zagreb, Croatia)

  • Marko Delimar

    (University of Zagreb, Faculty of Electrical Engineering and Computing, Department of Energy and Power Systems, Unska 3, 10000 Zagreb, Croatia)

Abstract

In competitive power markets, electric utilities, power producers, and traders are exposed to increased risks caused by electricity price volatility. The growing reliance on renewable sources and their dependence on weather, nuclear uncertainty, market coupling, and global financial instability are contributing to the importance of accurate electricity price forecasting. Since power markets are not all equally developed, different price forecasting methods have been introduced for individual markets. The aim of this research is to introduce a short-term electricity price forecasting method that addresses the problems of price volatility, a varying number of input parameters, varying data availability, and a large number of parameters and input data. Furthermore, the proposed model can be used on any market as it targets the characteristics and specifics of each market. The proposed Hybrid Iterative Reactive Adaptive (HIRA) method consists of two phases. In analysis phase, fundamental parameters which affect the electricity price are identified depending on market development. Obtained parameters are used as data inputs for price forecasting using a hybrid method. The HIRA model combines a statistical approach for large data set analysis and a similar day method with neural network tools. Similar days are examined using a statistical method which combines correlation significance, price volatility, and forecasting accuracy of the historical data. Data are collected based on their availability and electricity prices are forecasted in several iterations. All relevant data for price forecasting are collected, categorized, and arranged using simple indicators which makes the HIRA model adaptive and reactive to new market circumstances. The proposed model is validated using the Hungarian Power Exchange (HUPX) electricity price data records. The results show that with HIRA model forecasting, the error is stable and does not depend on price volatility. The HIRA method has proven to be applicable for forecasting electricity prices in real-time market conditions and enables effective hedging of price risk in the production or market portfolio.

Suggested Citation

  • Marin Cerjan & Ana Petričić & Marko Delimar, 2019. "HIRA Model for Short-Term Electricity Price Forecasting," Energies, MDPI, vol. 12(3), pages 1-32, February.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:3:p:568-:d:205164
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/3/568/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/3/568/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pawel Maryniak & Rafal Weron, 2014. "Forecasting the occurrence of electricity price spikes in the UK power market," HSC Research Reports HSC/14/11, Hugo Steinhaus Center, Wroclaw University of Technology.
    2. Laurent Pagnier & Philippe Jacquod, 2017. "How fast can one overcome the paradox of the energy transition? A physico-economic model for the European power grid," Papers 1706.00330, arXiv.org, revised Jun 2018.
    3. Hahn, Heiko & Meyer-Nieberg, Silja & Pickl, Stefan, 2009. "Electric load forecasting methods: Tools for decision making," European Journal of Operational Research, Elsevier, vol. 199(3), pages 902-907, December.
    4. Weron, Rafał, 2014. "Electricity price forecasting: A review of the state-of-the-art with a look into the future," International Journal of Forecasting, Elsevier, vol. 30(4), pages 1030-1081.
    5. Bordignon, Silvano & Bunn, Derek W. & Lisi, Francesco & Nan, Fany, 2013. "Combining day-ahead forecasts for British electricity prices," Energy Economics, Elsevier, vol. 35(C), pages 88-103.
    6. Marin Cerjan & Marin Matijaš & Marko Delimar, 2014. "Dynamic Hybrid Model for Short-Term Electricity Price Forecasting," Energies, MDPI, vol. 7(5), pages 1-15, May.
    7. Pagnier, Laurent & Jacquod, Philippe, 2018. "How fast can one overcome the paradox of the energy transition? A physico-economic model for the European power grid," Energy, Elsevier, vol. 157(C), pages 550-560.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Heidarpanah, Mohammadreza & Hooshyaripor, Farhad & Fazeli, Meysam, 2023. "Daily electricity price forecasting using artificial intelligence models in the Iranian electricity market," Energy, Elsevier, vol. 263(PE).
    2. AL-Alimi, Dalal & AlRassas, Ayman Mutahar & Al-qaness, Mohammed A.A. & Cai, Zhihua & Aseeri, Ahmad O. & Abd Elaziz, Mohamed & Ewees, Ahmed A., 2023. "TLIA: Time-series forecasting model using long short-term memory integrated with artificial neural networks for volatile energy markets," Applied Energy, Elsevier, vol. 343(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Avci, Ezgi & Ketter, Wolfgang & van Heck, Eric, 2018. "Managing electricity price modeling risk via ensemble forecasting: The case of Turkey," Energy Policy, Elsevier, vol. 123(C), pages 390-403.
    2. Claudio Monteiro & L. Alfredo Fernandez-Jimenez & Ignacio J. Ramirez-Rosado, 2015. "Explanatory Information Analysis for Day-Ahead Price Forecasting in the Iberian Electricity Market," Energies, MDPI, vol. 8(9), pages 1-23, September.
    3. Ping Jiang & Feng Liu & Yiliao Song, 2016. "A Hybrid Multi-Step Model for Forecasting Day-Ahead Electricity Price Based on Optimization, Fuzzy Logic and Model Selection," Energies, MDPI, vol. 9(8), pages 1-27, August.
    4. Billé, Anna Gloria & Gianfreda, Angelica & Del Grosso, Filippo & Ravazzolo, Francesco, 2023. "Forecasting electricity prices with expert, linear, and nonlinear models," International Journal of Forecasting, Elsevier, vol. 39(2), pages 570-586.
    5. Afanasyev, Dmitriy O. & Fedorova, Elena A., 2019. "On the impact of outlier filtering on the electricity price forecasting accuracy," Applied Energy, Elsevier, vol. 236(C), pages 196-210.
    6. Simon Pezzutto & Gianluca Grilli & Stefano Zambotti & Stefan Dunjic, 2018. "Forecasting Electricity Market Price for End Users in EU28 until 2020—Main Factors of Influence," Energies, MDPI, vol. 11(6), pages 1-18, June.
    7. Grzegorz Marcjasz & Tomasz Serafin & Rafał Weron, 2018. "Selection of Calibration Windows for Day-Ahead Electricity Price Forecasting," Energies, MDPI, vol. 11(9), pages 1-20, September.
    8. Christopher Kath & Florian Ziel, 2018. "The value of forecasts: Quantifying the economic gains of accurate quarter-hourly electricity price forecasts," Papers 1811.08604, arXiv.org.
    9. Marcjasz, Grzegorz & Uniejewski, Bartosz & Weron, Rafał, 2019. "On the importance of the long-term seasonal component in day-ahead electricity price forecasting with NARX neural networks," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1520-1532.
    10. Erik Heilmann & Janosch Henze & Heike Wetzel, 2021. "Machine learning in energy forecasts with an application to high frequency electricity consumption data," MAGKS Papers on Economics 202135, Philipps-Universität Marburg, Faculty of Business Administration and Economics, Department of Economics (Volkswirtschaftliche Abteilung).
    11. Umut Ugurlu & Ilkay Oksuz & Oktay Tas, 2018. "Electricity Price Forecasting Using Recurrent Neural Networks," Energies, MDPI, vol. 11(5), pages 1-23, May.
    12. Weron, Rafał & Zator, Michał, 2015. "A note on using the Hodrick–Prescott filter in electricity markets," Energy Economics, Elsevier, vol. 48(C), pages 1-6.
    13. Nowotarski, Jakub & Weron, Rafał, 2018. "Recent advances in electricity price forecasting: A review of probabilistic forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1548-1568.
    14. Zoran Gligorić & Svetlana Štrbac Savić & Aleksandra Grujić & Milanka Negovanović & Omer Musić, 2018. "Short-Term Electricity Price Forecasting Model Using Interval-Valued Autoregressive Process," Energies, MDPI, vol. 11(7), pages 1-17, July.
    15. Kath, Christopher & Ziel, Florian, 2021. "Conformal prediction interval estimation and applications to day-ahead and intraday power markets," International Journal of Forecasting, Elsevier, vol. 37(2), pages 777-799.
    16. Kath, Christopher & Ziel, Florian, 2018. "The value of forecasts: Quantifying the economic gains of accurate quarter-hourly electricity price forecasts," Energy Economics, Elsevier, vol. 76(C), pages 411-423.
    17. Jakub Nowotarski & Rafał Weron, 2015. "Computing electricity spot price prediction intervals using quantile regression and forecast averaging," Computational Statistics, Springer, vol. 30(3), pages 791-803, September.
    18. Panapakidis, Ioannis P. & Dagoumas, Athanasios S., 2016. "Day-ahead electricity price forecasting via the application of artificial neural network based models," Applied Energy, Elsevier, vol. 172(C), pages 132-151.
    19. Pape, Christian, 2018. "The impact of intraday markets on the market value of flexibility — Decomposing effects on profile and the imbalance costs," Energy Economics, Elsevier, vol. 76(C), pages 186-201.
    20. Uniejewski, Bartosz & Marcjasz, Grzegorz & Weron, Rafał, 2019. "On the importance of the long-term seasonal component in day-ahead electricity price forecasting: Part II — Probabilistic forecasting," Energy Economics, Elsevier, vol. 79(C), pages 171-182.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:3:p:568-:d:205164. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.