IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i3p555-d204851.html
   My bibliography  Save this article

Analysis of the Incidence of Direct Lightning over a HVDC Transmission Line through EFD Model

Author

Listed:
  • Ednardo Rodrigues

    (Department of Electrical Engineering, Federal University of Ceará (UFC), Fortaleza, Ceará 60440-900, Brazil)

  • Ricardo S. T. Pontes

    (Department of Electrical Engineering, Federal University of Ceará (UFC), Fortaleza, Ceará 60440-900, Brazil
    Center of Technologic Sciences, University of Fortaleza (Unifor), Fortaleza, Ceará 60811-905, Brazil)

  • João Bandeira

    (Department of Electrical Engineering, Federal University of Ceará (UFC), Fortaleza, Ceará 60440-900, Brazil)

  • Victor P. B. Aguiar

    (Department of Engineering and Technology, Federal Rural University of Semi-Arid Region (UFERSA), Mossoró 59625-900, Rio Grande do Norte, Brazil
    This author is a member of IEEE.)

Abstract

HVDC systems are becoming more common worldwide, specially in Brazil, since the adoption of such system for Itaipu’s hydroelectric complex in the 1980’s. Today, the country has the Xingu-Estreito bipole, with length of 2375 km. This system crosses a region with high lightning incidence, a phenomenon which causes faults in power systems. The most widely used model for the positioning of the arrestor cables over a transmission line is the electrogeometric model. This model, however, does not take into account the different potentials over the structure’s surface, and therefore presents significant inaccuracies when assessing the risk of lightning strikes on structures such as a HVDC line. This work then used the Electric Field Deflection (EFD) model with the aid finite elements. Four levels of lightning are assessed (I, II, III and IV), with current peaks of 3.9, 5.4, 10.1 and 15.7 kA. It was verified that the positive pole tends to attract most of the lightning with shielding failures width (SFW) of 12, 8, 4 and 0 m. It was then proposed to move the arrestor cables horizontally. The study indicates that this horizontal shifting of the cables in 5 and 8 m toward the side with larger chance of direct incidence reduces the shielding failure widths in 50% for peak current of 3.9 kA and almost eliminates the strikes for lightning with peak currents of 5.4, 10.1 and 15.7 kA.

Suggested Citation

  • Ednardo Rodrigues & Ricardo S. T. Pontes & João Bandeira & Victor P. B. Aguiar, 2019. "Analysis of the Incidence of Direct Lightning over a HVDC Transmission Line through EFD Model," Energies, MDPI, vol. 12(3), pages 1-17, February.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:3:p:555-:d:204851
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/3/555/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/3/555/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jordi-Roger Riba & Andrea Morosini & Francesca Capelli, 2018. "Comparative Study of AC and Positive and Negative DC Visual Corona for Sphere-Plane Gaps in Atmospheric Air," Energies, MDPI, vol. 11(10), pages 1-18, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Carlos Tejada-Martinez & Fermin P. Espino-Cortes & Suat Ilhan & Aydogan Ozdemir, 2019. "Optimization of Radio Interference Levels for 500 and 600 kV Bipolar HVDC Transmission Lines," Energies, MDPI, vol. 12(16), pages 1-14, August.
    2. Marek Florkowski & Jakub Furgał & Maciej Kuniewski, 2021. "Lightning Impulse Overvoltage Propagation in HVDC Meshed Grid," Energies, MDPI, vol. 14(11), pages 1-21, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Łukasz Nagi & Michał Kozioł & Jarosław Zygarlicki, 2020. "Optical Radiation from an Electric Arc at Different Frequencies," Energies, MDPI, vol. 13(7), pages 1-9, April.
    2. Erika Stracqualursi & Rodolfo Araneo & Salvatore Celozzi, 2021. "The Corona Phenomenon in Overhead Lines: Critical Overview of Most Common and Reliable Available Models," Energies, MDPI, vol. 14(20), pages 1-33, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:3:p:555-:d:204851. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.