IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i16p3187-d259141.html
   My bibliography  Save this article

Optimization of Radio Interference Levels for 500 and 600 kV Bipolar HVDC Transmission Lines

Author

Listed:
  • Carlos Tejada-Martinez

    (Departamento de Ingeniería Eléctrica SEPI ESIME Zacatenco, Instituto Politécnico Nacional, Mexico City 7738, Mexico)

  • Fermin P. Espino-Cortes

    (Departamento de Ingeniería Eléctrica SEPI ESIME Zacatenco, Instituto Politécnico Nacional, Mexico City 7738, Mexico)

  • Suat Ilhan

    (Department of Electrical Engineering, Istanbul Technical University, 34467 Istanbul, Turkey)

  • Aydogan Ozdemir

    (Department of Electrical Engineering, Istanbul Technical University, 34467 Istanbul, Turkey)

Abstract

In this work, a method to compute the radio interference (RI) lateral profiles generated by corona discharge in high voltage direct current (HVDC) transmission lines is presented. The method is based on a transmission line model that considers the skin effect, through the concept of complex penetration depth, in the conductors and in the ground plane. The attenuation constants are determined from the line parameters and the bipolar system is decoupled by using modal decomposition theory. As application cases, ±500 and ±600 kV bipolar transmission lines were analyzed. Afterwards, parametric sweeps of five variables that affect the RI levels are presented. Both the RI and the maximum electric field were calculated as a function of sub-conductor radius, bundle spacing, and the number of sub-conductors in the bundle. Additionally, the RI levels were also calculated as a function of the soil resistivity, and the RIV (radio interference voltage) frequency. Following this, vector optimization was applied to minimize the RI levels produced by the HVDC lines and differences between the designs with nominal and optimal values are discussed.

Suggested Citation

  • Carlos Tejada-Martinez & Fermin P. Espino-Cortes & Suat Ilhan & Aydogan Ozdemir, 2019. "Optimization of Radio Interference Levels for 500 and 600 kV Bipolar HVDC Transmission Lines," Energies, MDPI, vol. 12(16), pages 1-14, August.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:16:p:3187-:d:259141
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/16/3187/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/16/3187/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xiangyu Pei & Guangfu Tang & Shengmei Zhang, 2018. "A Novel Pilot Protection Principle Based on Modulus Traveling-Wave Currents for Voltage-Sourced Converter Based High Voltage Direct Current (VSC-HVDC) Transmission Lines," Energies, MDPI, vol. 11(9), pages 1-20, September.
    2. Ednardo Rodrigues & Ricardo S. T. Pontes & João Bandeira & Victor P. B. Aguiar, 2019. "Analysis of the Incidence of Direct Lightning over a HVDC Transmission Line through EFD Model," Energies, MDPI, vol. 12(3), pages 1-17, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ioannis F. Gonos & Issouf Fofana, 2020. "Special Issue “Selected Papers from the 2018 IEEE International Conference on High Voltage Engineering (ICHVE 2018)”," Energies, MDPI, vol. 13(18), pages 1-5, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiangyu Zheng & Rong Jia & Linling Gong & Guangru Zhang & Xiangyu Pei, 2019. "An Optimized Coordination Strategy between Line Main Protection and Hybrid DC Breakers for VSC-Based DC Grids Using Overhead Transmission Lines," Energies, MDPI, vol. 12(8), pages 1-13, April.
    2. Marek Florkowski & Jakub Furgał & Maciej Kuniewski, 2021. "Lightning Impulse Overvoltage Propagation in HVDC Meshed Grid," Energies, MDPI, vol. 14(11), pages 1-21, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:16:p:3187-:d:259141. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.