IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i3p467-d202566.html
   My bibliography  Save this article

Rheological Characteristics of Molten Salt Seeded with Al 2 O 3 Nanopowder and Graphene for Concentrated Solar Power

Author

Listed:
  • Xin Xiao

    (School of Chemical and Process Engineering, University of Leeds, Leeds LS2 9JT, UK)

  • Gan Zhang

    (Birmingham Centre for Energy Storage, School of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, UK)

  • Yulong Ding

    (Birmingham Centre for Energy Storage, School of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, UK)

  • Dongsheng Wen

    (School of Chemical and Process Engineering, University of Leeds, Leeds LS2 9JT, UK
    School of Aeronautic Science and Engineering, Beihang University, Beijing 100191, China)

Abstract

HITEC salt (NaNO 2 -NaO 3 -KNO 3 ) and solar salt (NaO 3 -KNO 3 ) are typical molten salts used in concentrated solar power. Adding nanoparticles is an effective method to improve the thermo-physical properties of pure salt. It is indispensable to experimentally study the rheological behaviours of salt seeded with nanoparticles, which can increase the specific heat capacity of pure salt. In this work, the viscosities of HITEC salt were measured with different shear rates in the temperature range of 200 °C to 450 °C firstly, while those of solar salt were measured in the temperature range of 250 °C to 500 °C. The experimental data showed reasonable agreement with the literature correlations, which verify the Newtonian behaviours of pure salts. The evolutions of the viscosities of nanocomposites in the same temperature range were measured and analysed, where the nanocomposites were synthesized with 1 wt.% or 2 wt.% Al 2 O 3 nanopowder and graphene, respectively. Results showed that the addition of Al 2 O 3 nanopowder had relatively little effect on viscosity, and the variations were about −35.4%~8.1% for the HITEC salt nanocomposites and −9.2%~68.1% for the solar salt nanocomposites. While graphene would apparently increase the viscosities of HITEC salt and solar salt, HITEC salt with the addition of graphene showed slight non-Newtonian fluid behaviour.

Suggested Citation

  • Xin Xiao & Gan Zhang & Yulong Ding & Dongsheng Wen, 2019. "Rheological Characteristics of Molten Salt Seeded with Al 2 O 3 Nanopowder and Graphene for Concentrated Solar Power," Energies, MDPI, vol. 12(3), pages 1-16, February.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:3:p:467-:d:202566
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/3/467/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/3/467/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhang, P. & Xiao, X. & Meng, Z.N. & Li, M., 2015. "Heat transfer characteristics of a molten-salt thermal energy storage unit with and without heat transfer enhancement," Applied Energy, Elsevier, vol. 137(C), pages 758-772.
    2. Wang, Sarah & Tarroja, Brian & Schell, Lori Smith & Shaffer, Brendan & Samuelsen, Scott, 2019. "Prioritizing among the end uses of excess renewable energy for cost-effective greenhouse gas emission reductions," Applied Energy, Elsevier, vol. 235(C), pages 284-298.
    3. Xu, Ben & Li, Peiwen & Chan, Cholik, 2015. "Application of phase change materials for thermal energy storage in concentrated solar thermal power plants: A review to recent developments," Applied Energy, Elsevier, vol. 160(C), pages 286-307.
    4. Awad, Afrah & Navarro, Helena & Ding, Yulong & Wen, Dongsheng, 2018. "Thermal-physical properties of nanoparticle-seeded nitrate molten salts," Renewable Energy, Elsevier, vol. 120(C), pages 275-288.
    5. Myers, Philip D. & Alam, Tanvir E. & Kamal, Rajeev & Goswami, D.Y. & Stefanakos, E., 2016. "Nitrate salts doped with CuO nanoparticles for thermal energy storage with improved heat transfer," Applied Energy, Elsevier, vol. 165(C), pages 225-233.
    6. Li, Wei & Zhang, Rong & Jiang, Nan & Tang, Xiao-fen & Shi, Hai-feng & Zhang, Xing-xiang & Zhang, Yuankai & Dong, Lin & Zhang, Ningxin, 2013. "Composite macrocapsule of phase change materials/expanded graphite for thermal energy storage," Energy, Elsevier, vol. 57(C), pages 607-614.
    7. José Miguel Maldonado & Margalida Fullana-Puig & Marc Martín & Aran Solé & Ángel G. Fernández & Alvaro De Gracia & Luisa F. Cabeza, 2018. "Phase Change Material Selection for Thermal Energy Storage at High Temperature Range between 210 °C and 270 °C," Energies, MDPI, vol. 11(4), pages 1-13, April.
    8. Fernández-García, Aránzazu & Valenzuela, Loreto & Zarza, Eduardo & Rojas, Esther & Pérez, Manuel & Hernández-Escobedo, Quetzalcoatl & Manzano-Agugliaro, Francisco, 2018. "SMALL-SIZED parabolic-trough solar collectors: Development of a test loop and evaluation of testing conditions," Energy, Elsevier, vol. 152(C), pages 401-415.
    9. Arthur, Owen & Karim, M.A., 2016. "An investigation into the thermophysical and rheological properties of nanofluids for solar thermal applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 739-755.
    10. Al-Jethelah, Manar & Tasnim, Syeda Humaira & Mahmud, Shohel & Dutta, Animesh, 2018. "Nano-PCM filled energy storage system for solar-thermal applications," Renewable Energy, Elsevier, vol. 126(C), pages 137-155.
    11. Aránzazu Fernández-García & Adel Juaidi & Florian Sutter & Lucía Martínez-Arcos & Francisco Manzano-Agugliaro, 2018. "Solar Reflector Materials Degradation Due to the Sand Deposited on the Backside Protective Paints," Energies, MDPI, vol. 11(4), pages 1-20, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiao, Xin & Jia, Hongwei & Wen, Dongsheng & Zhao, Xudong, 2020. "Thermal performance analysis of a solar energy storage unit encapsulated with HITEC salt/copper foam/nanoparticles composite," Energy, Elsevier, vol. 192(C).
    2. Marcin Kremieniewski, 2020. "Influence of Graphene Oxide on Rheological Parameters of Cement Slurries," Energies, MDPI, vol. 13(20), pages 1-15, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Y. & Zhao, C.Y. & Markides, C.N. & Wang, H. & Li, W., 2020. "Medium- and high-temperature latent and thermochemical heat storage using metals and metallic compounds as heat storage media: A technical review," Applied Energy, Elsevier, vol. 280(C).
    2. Saranprabhu, M.K. & Rajan, K.S., 2019. "Magnesium oxide nanoparticles dispersed solar salt with improved solid phase thermal conductivity and specific heat for latent heat thermal energy storage," Renewable Energy, Elsevier, vol. 141(C), pages 451-459.
    3. Adrián Caraballo & Santos Galán-Casado & Ángel Caballero & Sara Serena, 2021. "Molten Salts for Sensible Thermal Energy Storage: A Review and an Energy Performance Analysis," Energies, MDPI, vol. 14(4), pages 1-15, February.
    4. Palacios, Anabel & Cong, Lin & Navarro, M.E. & Ding, Yulong & Barreneche, Camila, 2019. "Thermal conductivity measurement techniques for characterizing thermal energy storage materials – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 32-52.
    5. Li, Zhi & Lu, Yiji & Huang, Rui & Chang, Jinwei & Yu, Xiaonan & Jiang, Ruicheng & Yu, Xiaoli & Roskilly, Anthony Paul, 2021. "Applications and technological challenges for heat recovery, storage and utilisation with latent thermal energy storage," Applied Energy, Elsevier, vol. 283(C).
    6. Naveed Hassan & Manickam Minakshi & Willey Yun Hsien Liew & Amun Amri & Zhong-Tao Jiang, 2023. "Thermal Characterization of Binary Calcium-Lithium Chloride Salts for Thermal Energy Storage at High Temperature," Energies, MDPI, vol. 16(12), pages 1-16, June.
    7. Xu, Yang & Ren, Qinlong & Zheng, Zhang-Jing & He, Ya-Ling, 2017. "Evaluation and optimization of melting performance for a latent heat thermal energy storage unit partially filled with porous media," Applied Energy, Elsevier, vol. 193(C), pages 84-95.
    8. Jayathunga, D.S. & Karunathilake, H.P. & Narayana, M. & Witharana, S., 2024. "Phase change material (PCM) candidates for latent heat thermal energy storage (LHTES) in concentrated solar power (CSP) based thermal applications - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    9. Jiang, Zhu & Palacios, Anabel & Lei, Xianzhang & Navarro, M.E. & Qiao, Geng & Mura, Ernesto & Xu, Guizhi & Ding, Yulong, 2019. "Novel key parameter for eutectic nitrates based nanofluids selection for concentrating solar power (CSP) systems," Applied Energy, Elsevier, vol. 235(C), pages 529-542.
    10. Rostami, Sara & Afrand, Masoud & Shahsavar, Amin & Sheikholeslami, M. & Kalbasi, Rasool & Aghakhani, Saeed & Shadloo, Mostafa Safdari & Oztop, Hakan F., 2020. "A review of melting and freezing processes of PCM/nano-PCM and their application in energy storage," Energy, Elsevier, vol. 211(C).
    11. Nomura, Takahiro & Zhu, Chunyu & Nan, Sheng & Tabuchi, Kazuki & Wang, Shuangfeng & Akiyama, Tomohiro, 2016. "High thermal conductivity phase change composite with a metal-stabilized carbon-fiber network," Applied Energy, Elsevier, vol. 179(C), pages 1-6.
    12. Gasia, Jaume & Miró, Laia & Cabeza, Luisa F., 2016. "Materials and system requirements of high temperature thermal energy storage systems: A review. Part 2: Thermal conductivity enhancement techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1584-1601.
    13. Wickramaratne, Chatura & Dhau, Jaspreet S. & Kamal, Rajeev & Myers, Philip & Goswami, D.Y. & Stefanakos, E., 2018. "Macro-encapsulation and characterization of chloride based inorganic Phase change materials for high temperature thermal energy storage systems," Applied Energy, Elsevier, vol. 221(C), pages 587-596.
    14. Xiao, Xin & Jia, Hongwei & Wen, Dongsheng & Zhao, Xudong, 2020. "Thermal performance analysis of a solar energy storage unit encapsulated with HITEC salt/copper foam/nanoparticles composite," Energy, Elsevier, vol. 192(C).
    15. Lin, Yaxue & Alva, Guruprasad & Fang, Guiyin, 2018. "Review on thermal performances and applications of thermal energy storage systems with inorganic phase change materials," Energy, Elsevier, vol. 165(PA), pages 685-708.
    16. Tao, Y.B. & Carey, V.P., 2016. "Effects of PCM thermophysical properties on thermal storage performance of a shell-and-tube latent heat storage unit," Applied Energy, Elsevier, vol. 179(C), pages 203-210.
    17. Zhang, P. & Xiao, X. & Ma, Z.W., 2016. "A review of the composite phase change materials: Fabrication, characterization, mathematical modeling and application to performance enhancement," Applied Energy, Elsevier, vol. 165(C), pages 472-510.
    18. Tang, Yaojie & Su, Di & Huang, Xiang & Alva, Guruprasad & Liu, Lingkun & Fang, Guiyin, 2016. "Synthesis and thermal properties of the MA/HDPE composites with nano-additives as form-stable PCM with improved thermal conductivity," Applied Energy, Elsevier, vol. 180(C), pages 116-129.
    19. Palacios, A. & Barreneche, C. & Navarro, M.E. & Ding, Y., 2020. "Thermal energy storage technologies for concentrated solar power – A review from a materials perspective," Renewable Energy, Elsevier, vol. 156(C), pages 1244-1265.
    20. Wong-Pinto, Liey-Si & Milian, Yanio & Ushak, Svetlana, 2020. "Progress on use of nanoparticles in salt hydrates as phase change materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 122(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:3:p:467-:d:202566. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.