IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i16p7156-d1460323.html
   My bibliography  Save this article

Enhancing Decision Making and Decarbonation in Environmental Management: A Review on the Role of Digital Technologies

Author

Listed:
  • Abdel-Mohsen O. Mohamed

    (Uberbinder Limited, Oxford OX4 4GP, UK
    EX Scientific Consultants, Abu Dhabi P.O. Box 762428, United Arab Emirates)

  • Dina Mohamed

    (Educational Research, Lancaster University, Lancaster LA1 4YW, UK)

  • Adham Fayad

    (Business Management, De Montfort University, Dubai Campus, Dubai P.O. Box 294345, United Arab Emirates)

  • Moza T. Al Nahyan

    (College of Business, Abu Dhabi University, Abu Dhabi P.O. Box 59911, United Arab Emirates)

Abstract

As global concerns about climate change intensify, the need for effective strategies to reduce carbon emissions, has never been more urgent. This review paper explores the crucial role of digital technologies (i.e., data automation (DA) and decision support systems (DSSs)) in enhancing decision making and achieving a ZERONET initiative (decarbonation efforts) within the realms of solid waste management (SWM), wastewater treatment (WWT), and contaminated soil remediation (CSR). Specifically, the paper provides (a) an overview of the carbon footprint (CFP) in relation to environmental management (EM) and the role of DA and DSS in decarbonization; (b) case studies in areas of SWM, WWT, and CSR in relation to the use of (i) digital technology; ((ii) life cycle assessment (LCA)-based DSS; and (iii) multi-criteria decision analysis (MCDA)-based DSS; and (c) optimal contractual delivery method-based DSS case studies in EM practices. This review concludes that the adoption of DA and DSSs in SWM, WWT, and CSR holds significant potential for enhancing decision making and decarbonizing EM processes. By optimizing operations, enhancing resource efficiency, and integrating renewable energy sources, smart EM technologies can contribute to a reduction in GHG emissions and the promotion of sustainable EM practices. As the demand for more effective and eco-friendly solutions grows, the role of DA and DSSs will become increasingly pivotal in achieving global decarbonization goals.

Suggested Citation

  • Abdel-Mohsen O. Mohamed & Dina Mohamed & Adham Fayad & Moza T. Al Nahyan, 2024. "Enhancing Decision Making and Decarbonation in Environmental Management: A Review on the Role of Digital Technologies," Sustainability, MDPI, vol. 16(16), pages 1-34, August.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:16:p:7156-:d:1460323
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/16/7156/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/16/7156/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hauck, Mara & Maalcke-Luesken, Francisca A. & Jetten, Mike S.M. & Huijbregts, Mark A.J., 2016. "Removing nitrogen from wastewater with side stream anammox: What are the trade-offs between environmental impacts?," Resources, Conservation & Recycling, Elsevier, vol. 107(C), pages 212-219.
    2. Guo, Sen & Zhao, Huiru, 2015. "Optimal site selection of electric vehicle charging station by using fuzzy TOPSIS based on sustainability perspective," Applied Energy, Elsevier, vol. 158(C), pages 390-402.
    3. Bihter Gizem Demircan & Kaan Yetilmezsoy, 2023. "A Hybrid Fuzzy AHP-TOPSIS Approach for Implementation of Smart Sustainable Waste Management Strategies," Sustainability, MDPI, vol. 15(8), pages 1-23, April.
    4. Chen, Huazhou & Chen, An & Xu, Lili & Xie, Hai & Qiao, Hanli & Lin, Qinyong & Cai, Ken, 2020. "A deep learning CNN architecture applied in smart near-infrared analysis of water pollution for agricultural irrigation resources," Agricultural Water Management, Elsevier, vol. 240(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Shunxi & Su, Bowen & St-Pierre, David L. & Sui, Pang-Chieh & Zhang, Guofang & Xiao, Jinsheng, 2017. "Decision-making of compressed natural gas station siting for public transportation: Integration of multi-objective optimization, fuzzy evaluating, and radar charting," Energy, Elsevier, vol. 140(P1), pages 11-17.
    2. Alaa Saeed & A. A. Abdel-Aziz & Amr Mossad & Mahmoud A. Abdelhamid & Alfadhl Y. Alkhaled & Muhammad Mayhoub, 2023. "Smart Detection of Tomato Leaf Diseases Using Transfer Learning-Based Convolutional Neural Networks," Agriculture, MDPI, vol. 13(1), pages 1-14, January.
    3. Nock, Destenie & Baker, Erin, 2019. "Holistic multi-criteria decision analysis evaluation of sustainable electric generation portfolios: New England case study," Applied Energy, Elsevier, vol. 242(C), pages 655-673.
    4. Danijela Tuljak-Suban & Patricija Bajec, 2022. "A Hybrid DEA Approach for the Upgrade of an Existing Bike-Sharing System with Electric Bikes," Energies, MDPI, vol. 15(21), pages 1-23, October.
    5. Yang, Jun & Guo, Fang & Zhang, Min, 2017. "Optimal planning of swapping/charging station network with customer satisfaction," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 103(C), pages 174-197.
    6. Csiszár, Csaba & Csonka, Bálint & Földes, Dávid & Wirth, Ervin & Lovas, Tamás, 2020. "Location optimisation method for fast-charging stations along national roads," Journal of Transport Geography, Elsevier, vol. 88(C).
    7. Manbachi, M. & Sadu, A. & Farhangi, H. & Monti, A. & Palizban, A. & Ponci, F. & Arzanpour, S., 2016. "Impact of EV penetration on Volt–VAR Optimization of distribution networks using real-time co-simulation monitoring platform," Applied Energy, Elsevier, vol. 169(C), pages 28-39.
    8. Sellak, Hamza & Ouhbi, Brahim & Frikh, Bouchra & Palomares, Iván, 2017. "Towards next-generation energy planning decision-making: An expert-based framework for intelligent decision support," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1544-1577.
    9. Erbaş, Mehmet & Kabak, Mehmet & Özceylan, Eren & Çetinkaya, Cihan, 2018. "Optimal siting of electric vehicle charging stations: A GIS-based fuzzy Multi-Criteria Decision Analysis," Energy, Elsevier, vol. 163(C), pages 1017-1031.
    10. Woo, Hyeon & Son, Yongju & Cho, Jintae & Kim, Sung-Yul & Choi, Sungyun, 2023. "Optimal expansion planning of electric vehicle fast charging stations," Applied Energy, Elsevier, vol. 342(C).
    11. Panagiotis Skaloumpakas & Evangelos Spiliotis & Elissaios Sarmas & Alexios Lekidis & George Stravodimos & Dimitris Sarigiannis & Ioanna Makarouni & Vangelis Marinakis & John Psarras, 2022. "A Multi-Criteria Approach for Optimizing the Placement of Electric Vehicle Charging Stations in Highways," Energies, MDPI, vol. 15(24), pages 1-13, December.
    12. Oluwasola O. Ademulegun & Paul MacArtain & Bukola Oni & Neil J. Hewitt, 2022. "Multi-Stage Multi-Criteria Decision Analysis for Siting Electric Vehicle Charging Stations within and across Border Regions," Energies, MDPI, vol. 15(24), pages 1-28, December.
    13. Zhou, Guangyou & Zhu, Zhiwei & Luo, Sumei, 2022. "Location optimization of electric vehicle charging stations: Based on cost model and genetic algorithm," Energy, Elsevier, vol. 247(C).
    14. Hieu T. T. L. Pham & Mahdi Rafieizonooz & SangUk Han & Dong-Eun Lee, 2021. "Current Status and Future Directions of Deep Learning Applications for Safety Management in Construction," Sustainability, MDPI, vol. 13(24), pages 1-37, December.
    15. Yunna Wu & Meng Yang & Haobo Zhang & Kaifeng Chen & Yang Wang, 2016. "Optimal Site Selection of Electric Vehicle Charging Stations Based on a Cloud Model and the PROMETHEE Method," Energies, MDPI, vol. 9(3), pages 1-20, March.
    16. Hamza El Hafdaoui & Hamza El Alaoui & Salma Mahidat & Zakaria El Harmouzi & Ahmed Khallaayoun, 2023. "Impact of Hot Arid Climate on Optimal Placement of Electric Vehicle Charging Stations," Energies, MDPI, vol. 16(2), pages 1-19, January.
    17. Zhou, Jianli & Wu, Yunna & Tao, Yao & Gao, Jianwei & Zhong, Zhiming & Xu, Chuanbo, 2021. "Geographic information big data-driven two-stage optimization model for location decision of hydrogen refueling stations: An empirical study in China," Energy, Elsevier, vol. 225(C).
    18. Arzu Muyesseroglu & Irem Duzdar Argun & Gulgun Kayakutlu, 2023. "Electric vehicle charge station layout planning: A case study in Istanbul Technical University campus," Managerial and Decision Economics, John Wiley & Sons, Ltd., vol. 44(3), pages 1767-1778, April.
    19. Jianmin Jia & Mohamed Ibrahim & Mohammed Hadi & Wallied Orabi & Yan Xiao, 2018. "Multi-Criteria Evaluation Framework in Selection of Accelerated Bridge Construction (ABC) Method," Sustainability, MDPI, vol. 10(11), pages 1-15, November.
    20. Athanasios P. Vavatsikos & Efstratios Tsesmetzis & Georgios Koulinas & Dimitrios Koulouriotis, 2022. "A robust group decision making framework using fuzzy TOPSIS and Monte Carlo simulation for wind energy projects multicriteria evaluation," Operational Research, Springer, vol. 22(5), pages 6055-6073, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:16:p:7156-:d:1460323. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.