High Frequency Square-Wave Voltage Injection Scheme-Based Position Sensorless Control of IPMSM in the Low- and Zero- Speed Range
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Wei Hua & Ling Kang Zhou, 2015. "Investigation of a Co-Axial Dual-Mechanical Ports Flux-Switching Permanent Magnet Machine for Hybrid Electric Vehicles," Energies, MDPI, vol. 8(12), pages 1-19, December.
- Chengming Zhang & Qingbo Guo & Liyi Li & Mingyi Wang & Tiecheng Wang, 2017. "System Efficiency Improvement for Electric Vehicles Adopting a Permanent Magnet Synchronous Motor Direct Drive System," Energies, MDPI, vol. 10(12), pages 1-27, December.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Xiaolei Cai & Qixuan Wang & Yucheng Wang & Li Zhang, 2023. "Research on a Variable-Leakage-Flux Permanent Magnet Motor Control System Based on an Adaptive Tracking Estimator," Energies, MDPI, vol. 16(2), pages 1-16, January.
- Jongwon Choi, 2021. "Regression Model-Based Flux Observer for IPMSM Sensorless Control with Wide Speed Range," Energies, MDPI, vol. 14(19), pages 1-18, October.
- Ke Yu & Zuo Wang & Ling Li, 2022. "An Optimized Time Sequence for Sensorless Control of IPMSM Drives via High-Frequency Square-Wave Signal Injection Scheme," Energies, MDPI, vol. 15(6), pages 1-15, March.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Alireza Rasekh & Peter Sergeant & Jan Vierendeels, 2016. "Development of Correlations for Windage Power Losses Modeling in an Axial Flux Permanent Magnet Synchronous Machine with Geometrical Features of the Magnets," Energies, MDPI, vol. 9(12), pages 1-17, November.
- Klemen Drobnič & Lovrenc Gašparin & Rastko Fišer, 2019. "Fast and Accurate Model of Interior Permanent-Magnet Machine for Dynamic Characterization," Energies, MDPI, vol. 12(5), pages 1-20, February.
- Andrzej Łebkowski, 2018. "Design, Analysis of the Location and Materials of Neodymium Magnets on the Torque and Power of In-Wheel External Rotor PMSM for Electric Vehicles," Energies, MDPI, vol. 11(9), pages 1-23, August.
- Taewook Ha & Nyeon Gu Han & Min Soo Kim & Kyu Heon Rho & Dong Kyu Kim, 2021. "Experimental Study on Behavior of Coolants, Particularly the Oil-Cooling Method, in Electric Vehicle Motors Using Hairpin Winding," Energies, MDPI, vol. 14(4), pages 1-15, February.
- Dongliang Liu & Xinhua Guo & Youjian Lei & Rongkun Wang & Ruipei Chen & Fenyu Chen & Zhongshen Li, 2022. "An Improved Control Strategy of PMSM Drive System with Integrated Bidirectional DC/DC," Energies, MDPI, vol. 15(6), pages 1-16, March.
- Gianluca Brando & Adolfo Dannier & Andrea Del Pizzo, 2022. "Efficiency Analytical Characterization for Brushless Electric Drives," Energies, MDPI, vol. 15(8), pages 1-11, April.
- Miran Rodič & Miro Milanovič & Mitja Truntič, 2018. "Digital Control of an Interleaving Operated Buck-Boost Synchronous Converter Used in a Low-Cost Testing System for an Automotive Powertrain," Energies, MDPI, vol. 11(9), pages 1-24, August.
- Michele De Santis & Sandro Agnelli & Fabrizio Patanè & Oliviero Giannini & Gino Bella, 2018. "Experimental Study for the Assessment of the Measurement Uncertainty Associated with Electric Powertrain Efficiency Using the Back-to-Back Direct Method," Energies, MDPI, vol. 11(12), pages 1-19, December.
- Jyun-You Chen & Shih-Chin Yang & Kai-Hsiang Tu, 2018. "Comparative Evaluation of a Permanent Magnet Machine Saliency-Based Drive with Sine-Wave and Square-Wave Voltage Injection," Energies, MDPI, vol. 11(9), pages 1-15, August.
- Shun Li & Xinxiu Zhou, 2018. "Sensorless Energy Conservation Control for Permanent Magnet Synchronous Motors Based on a Novel Hybrid Observer Applied in Coal Conveyer Systems," Energies, MDPI, vol. 11(10), pages 1-23, September.
- Andrzej Łebkowski, 2018. "Reduction of Fuel Consumption and Pollution Emissions in Inland Water Transport by Application of Hybrid Powertrain," Energies, MDPI, vol. 11(8), pages 1-16, July.
- Yunkai Huang & Baocheng Guo & Ahmed Hemeida & Peter Sergeant, 2016. "Analytical Modeling of Static Eccentricities in Axial Flux Permanent-Magnet Machines with Concentrated Windings," Energies, MDPI, vol. 9(11), pages 1-19, October.
- Feng Li & Xiaoyong Zhu, 2021. "Comparative Study of Stepwise Optimization and Global Optimization on a Nine-Phase Flux-Switching PM Generator," Energies, MDPI, vol. 14(16), pages 1-13, August.
More about this item
Keywords
sensorless control; high frequency square-wave voltage; interior permanent-magnet synchronous motor (IPMSM); magnetic polarity detection; rotor position estimation;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:24:p:4776-:d:298066. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.