IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i23p4603-d293822.html
   My bibliography  Save this article

Transmission-Scale Battery Energy Storage Systems: A Systematic Literature Review

Author

Listed:
  • Kevin Marnell

    (Pacific Power, Portland, OR 97232, USA)

  • Manasseh Obi

    (Portland General Electric, Portland, OR 97204, USA)

  • Robert Bass

    (Department of Electrical & Computer Engineering, Portland State University, Portland, OR 97201, USA)

Abstract

When the transmission capacity of an electrical system is insufficient to adequately serve customer demand, the transmission system is said to be experiencing congestion. More transmission lines can be built to increase capacity. However, transmission congestion typically only occurs during periods of peak demand, which occur just a few times per year; capitol-intensive investments in new transmission capacity address problems that occur infrequently. Alternative solutions to alleviated transmission congestion have been devised, including generation curtailment, demand response programs, and various remedial action schema. Though not currently a common solution, battery energy storage systems can also provide transmission congestion relief. Technological and market trends indicate the growing production capacity of battery energy storage systems and decreasing prices, which indicate the technology may soon become a viable option for providing congestion relief. Batteries can provide multiple ancillary services, and so can concurrently provide value through multiple revenue streams. In this manuscript, the authors present a systematic review of literature, technology, regulations, and projects related to the use of battery energy storage systems to provide transmission congestion relief.

Suggested Citation

  • Kevin Marnell & Manasseh Obi & Robert Bass, 2019. "Transmission-Scale Battery Energy Storage Systems: A Systematic Literature Review," Energies, MDPI, vol. 12(23), pages 1-31, December.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:23:p:4603-:d:293822
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/23/4603/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/23/4603/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Poullikkas, Andreas, 2013. "A comparative overview of large-scale battery systems for electricity storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 778-788.
    2. Kazempour, S. Jalal & Moghaddam, M. Parsa & Haghifam, M.R. & Yousefi, G.R., 2009. "Electric energy storage systems in a market-based economy: Comparison of emerging and traditional technologies," Renewable Energy, Elsevier, vol. 34(12), pages 2630-2639.
    3. Yang, Yuqing & Bremner, Stephen & Menictas, Chris & Kay, Merlinde, 2018. "Battery energy storage system size determination in renewable energy systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 109-125.
    4. Roberto Benato & Gianluca Bruno & Francesco Palone & Rosario M. Polito & Massimo Rebolini, 2017. "Large-Scale Electrochemical Energy Storage in High Voltage Grids: Overview of the Italian Experience," Energies, MDPI, vol. 10(1), pages 1-17, January.
    5. Obi, Manasseh & Jensen, S.M. & Ferris, Jennifer B. & Bass, Robert B., 2017. "Calculation of levelized costs of electricity for various electrical energy storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 908-920.
    6. Telaretti, E. & Graditi, G. & Ippolito, M.G. & Zizzo, G., 2016. "Economic feasibility of stationary electrochemical storages for electric bill management applications: The Italian scenario," Energy Policy, Elsevier, vol. 94(C), pages 126-137.
    7. Hemmati, Reza & Saboori, Hedayat, 2016. "Emergence of hybrid energy storage systems in renewable energy and transport applications – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 11-23.
    8. Sidhu, A. & Pollitt, M. & Anaya, K., 2017. "A Social Cost Benefit Analysis of Grid-Scale Electrical Energy Storage Projects: Evaluating the Smarter Network Storage Project," Cambridge Working Papers in Economics 1722, Faculty of Economics, University of Cambridge.
    9. Berrada, Asmae & Loudiyi, Khalid & Zorkani, Izeddine, 2016. "Valuation of energy storage in energy and regulation markets," Energy, Elsevier, vol. 115(P1), pages 1109-1118.
    10. Cutter, Eric & Haley, Ben & Hargreaves, Jeremy & Williams, Jim, 2014. "Utility scale energy storage and the need for flexible capacity metrics," Applied Energy, Elsevier, vol. 124(C), pages 274-282.
    11. Luo, Xing & Wang, Jihong & Dooner, Mark & Clarke, Jonathan, 2015. "Overview of current development in electrical energy storage technologies and the application potential in power system operation," Applied Energy, Elsevier, vol. 137(C), pages 511-536.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Biancardi, Andrea & Mendes, Carla & Staffell, Iain, 2024. "Battery electricity storage as both a complement and substitute for cross-border interconnection," Energy Policy, Elsevier, vol. 189(C).
    2. Paulius Šūmakaris & Renata Korsakienė & Deniss Ščeulovs, 2021. "Determinants of Energy Efficient Innovation: A Systematic Literature Review," Energies, MDPI, vol. 14(22), pages 1-20, November.
    3. Camilo Andres Mora & Oscar Danilo Montoya & Edwin Rivas Trujillo, 2020. "Mixed-Integer Programming Model for Transmission Network Expansion Planning with Battery Energy Storage Systems (BESS)," Energies, MDPI, vol. 13(17), pages 1-22, August.
    4. Vykhodtsev, Anton V. & Jang, Darren & Wang, Qianpu & Rosehart, William & Zareipour, Hamidreza, 2022. "A review of modelling approaches to characterize lithium-ion battery energy storage systems in techno-economic analyses of power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
    5. Wang, Xiaokui & Bamisile, Olusola & Chen, Shuheng & Xu, Xiao & Luo, Shihua & Huang, Qi & Hu, Weihao, 2022. "Decarbonization of China's electricity systems with hydropower penetration and pumped-hydro storage: Comparing the policies with a techno-economic analysis," Renewable Energy, Elsevier, vol. 196(C), pages 65-83.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dehghani-Sanij, A.R. & Tharumalingam, E. & Dusseault, M.B. & Fraser, R., 2019. "Study of energy storage systems and environmental challenges of batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 192-208.
    2. Yang, Yuqing & Bremner, Stephen & Menictas, Chris & Kay, Merlinde, 2022. "Modelling and optimal energy management for battery energy storage systems in renewable energy systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    3. Ren, Guorui & Liu, Jinfu & Wan, Jie & Guo, Yufeng & Yu, Daren, 2017. "Overview of wind power intermittency: Impacts, measurements, and mitigation solutions," Applied Energy, Elsevier, vol. 204(C), pages 47-65.
    4. Argyrou, Maria C. & Christodoulides, Paul & Kalogirou, Soteris A., 2018. "Energy storage for electricity generation and related processes: Technologies appraisal and grid scale applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 804-821.
    5. Papadopoulos, Agis M., 2020. "Renewable energies and storage in small insular systems: Potential, perspectives and a case study," Renewable Energy, Elsevier, vol. 149(C), pages 103-114.
    6. Zhao, Chunyang & Andersen, Peter Bach & Træholt, Chresten & Hashemi, Seyedmostafa, 2023. "Grid-connected battery energy storage system: a review on application and integration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    7. Sara Bellocchi & Michele Manno & Michel Noussan & Michela Vellini, 2019. "Impact of Grid-Scale Electricity Storage and Electric Vehicles on Renewable Energy Penetration: A Case Study for Italy," Energies, MDPI, vol. 12(7), pages 1-32, April.
    8. Yang, Yuqing & Bremner, Stephen & Menictas, Chris & Kay, Merlinde, 2022. "Forecasting error processing techniques and frequency domain decomposition for forecasting error compensation and renewable energy firming in hybrid systems," Applied Energy, Elsevier, vol. 313(C).
    9. Lai, Chun Sing & Locatelli, Giorgio, 2021. "Economic and financial appraisal of novel large-scale energy storage technologies," Energy, Elsevier, vol. 214(C).
    10. Katsanevakis, Markos & Stewart, Rodney A. & Lu, Junwei, 2017. "Aggregated applications and benefits of energy storage systems with application-specific control methods: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 719-741.
    11. Hunt, Julian David & Zakeri, Behnam & Falchetta, Giacomo & Nascimento, Andreas & Wada, Yoshihide & Riahi, Keywan, 2020. "Mountain Gravity Energy Storage: A new solution for closing the gap between existing short- and long-term storage technologies," Energy, Elsevier, vol. 190(C).
    12. Wu, Wei & Lin, Boqiang, 2018. "Application value of energy storage in power grid: A special case of China electricity market," Energy, Elsevier, vol. 165(PB), pages 1191-1199.
    13. Dranka, Géremi Gilson & Ferreira, Paula & Vaz, A. Ismael F., 2021. "A review of co-optimization approaches for operational and planning problems in the energy sector," Applied Energy, Elsevier, vol. 304(C).
    14. Martin Henke & Getu Hailu, 2020. "Thermal Management of Stationary Battery Systems: A Literature Review," Energies, MDPI, vol. 13(16), pages 1-16, August.
    15. Núñez, Fernando & Canca, David & Arcos-Vargas, Ángel, 2022. "An assessment of European electricity arbitrage using storage systems," Energy, Elsevier, vol. 242(C).
    16. Tee, Wei Hown & Gan, Chin Kim & Sardi, Junainah, 2024. "Benefits of energy storage systems and its potential applications in Malaysia: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    17. Kebede, Abraham Alem & Kalogiannis, Theodoros & Van Mierlo, Joeri & Berecibar, Maitane, 2022. "A comprehensive review of stationary energy storage devices for large scale renewable energy sources grid integration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    18. Efstathios E. Michaelides, 2021. "Thermodynamics, Energy Dissipation, and Figures of Merit of Energy Storage Systems—A Critical Review," Energies, MDPI, vol. 14(19), pages 1-41, September.
    19. Georgiou, Solomos & Shah, Nilay & Markides, Christos N., 2018. "A thermo-economic analysis and comparison of pumped-thermal and liquid-air electricity storage systems," Applied Energy, Elsevier, vol. 226(C), pages 1119-1133.
    20. Barra, P.H.A. & de Carvalho, W.C. & Menezes, T.S. & Fernandes, R.A.S. & Coury, D.V., 2021. "A review on wind power smoothing using high-power energy storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:23:p:4603-:d:293822. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.