IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i1p108-d88014.html
   My bibliography  Save this article

Large-Scale Electrochemical Energy Storage in High Voltage Grids: Overview of the Italian Experience

Author

Listed:
  • Roberto Benato

    (Department of Industrial Engineering, University of Padova, 35100 Padova, Italy)

  • Gianluca Bruno

    (Terna Rete Italia, 00156 Rome, Italy)

  • Francesco Palone

    (Terna Rete Italia, 00156 Rome, Italy)

  • Rosario M. Polito

    (Terna Rete Italia, 00156 Rome, Italy)

  • Massimo Rebolini

    (Terna Rete Italia, 00156 Rome, Italy)

Abstract

This paper offers a wide overview on the large-scale electrochemical energy projects installed in the high voltage Italian grid. Detailed descriptions of energy (charge/discharge times of about 8 h) and power intensive (charge/discharge times ranging from 0.5 h to 4 h) installations are presented with some insights into the authorization procedures, safety features, and ancillary services. These different charge/discharge times reflect the different operation uses inside the electric grid. Energy intensive storage aims at decoupling generation and utilization since, in the southern part of Italy, there has been a great growth of wind farms: these areas are characterized by a surplus of generation with respect to load absorption and to the net transport capacity of the 150 kV high voltage backbones. Power intensive storage aims at providing ancillary services inside the electric grid as primary and secondary frequency regulation, synthetic rotational inertia, and further functionalities. The return on experience of Italian installations will be able to play a key role also for other countries and other transmission system operators.

Suggested Citation

  • Roberto Benato & Gianluca Bruno & Francesco Palone & Rosario M. Polito & Massimo Rebolini, 2017. "Large-Scale Electrochemical Energy Storage in High Voltage Grids: Overview of the Italian Experience," Energies, MDPI, vol. 10(1), pages 1-17, January.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:1:p:108-:d:88014
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/1/108/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/1/108/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mauro Andriollo & Roberto Benato & Michele Bressan & Sebastian Dambone Sessa & Francesco Palone & Rosario Maria Polito, 2015. "Review of Power Conversion and Conditioning Systems for Stationary Electrochemical Storage," Energies, MDPI, vol. 8(2), pages 1-16, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Curto, Domenico & Favuzza, Salvatore & Franzitta, Vincenzo & Guercio, Andrea & Amparo Navarro Navia, Milagros & Telaretti, Enrico & Zizzo, Gaetano, 2022. "Grid Stability Improvement Using Synthetic Inertia by Battery Energy Storage Systems in Small Islands," Energy, Elsevier, vol. 254(PC).
    2. Roberto Benato & Sebastian Dambone Sessa & Maura Musio & Francesco Palone & Rosario Maria Polito, 2018. "Italian Experience on Electrical Storage Ageing for Primary Frequency Regulation," Energies, MDPI, vol. 11(8), pages 1-12, August.
    3. Mariano G. Ippolito & Rossano Musca & Gaetano Zizzo, 2021. "Analysis and Simulations of the Primary Frequency Control during a System Split in Continental Europe Power System," Energies, MDPI, vol. 14(5), pages 1-22, March.
    4. Rui Xiong & Hailong Li & Xuan Zhou, 2017. "Advanced Energy Storage Technologies and Their Applications (AESA2017)," Energies, MDPI, vol. 10(9), pages 1-3, September.
    5. Miguel Ramírez‐González & Rafael Castellanos‐Bustamante & Jorge G. Calderón‐Guizar & Om P. Malik, 2019. "Assessment of inertial and primary frequency control from wind power plants in the Mexican electric power grid," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 8(6), November.
    6. Ekaterina Bayborodina & Michael Negnevitsky & Evan Franklin & Alison Washusen, 2021. "Grid-Scale Battery Energy Storage Operation in Australian Electricity Spot and Contingency Reserve Markets," Energies, MDPI, vol. 14(23), pages 1-21, December.
    7. Kevin Marnell & Manasseh Obi & Robert Bass, 2019. "Transmission-Scale Battery Energy Storage Systems: A Systematic Literature Review," Energies, MDPI, vol. 12(23), pages 1-31, December.
    8. Sara Bellocchi & Michele Manno & Michel Noussan & Michela Vellini, 2019. "Impact of Grid-Scale Electricity Storage and Electric Vehicles on Renewable Energy Penetration: A Case Study for Italy," Energies, MDPI, vol. 12(7), pages 1-32, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fabio Massimo Gatta & Alberto Geri & Regina Lamedica & Stefano Lauria & Marco Maccioni & Francesco Palone & Massimo Rebolini & Alessandro Ruvio, 2016. "Application of a LiFePO 4 Battery Energy Storage System to Primary Frequency Control: Simulations and Experimental Results," Energies, MDPI, vol. 9(11), pages 1-16, October.
    2. Mariano G. Ippolito & Rossano Musca & Gaetano Zizzo, 2021. "Analysis and Simulations of the Primary Frequency Control during a System Split in Continental Europe Power System," Energies, MDPI, vol. 14(5), pages 1-22, March.
    3. Roberto Benato & Sebastian Dambone Sessa & Maura Musio & Francesco Palone & Rosario Maria Polito, 2018. "Italian Experience on Electrical Storage Ageing for Primary Frequency Regulation," Energies, MDPI, vol. 11(8), pages 1-12, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:1:p:108-:d:88014. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.