IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i23p4560-d292462.html
   My bibliography  Save this article

Numerical Investigation on the Influence of Mechanical Draft Wet-Cooling Towers on the Cooling Performance of Air-Cooled Condenser with Complex Building Environment

Author

Listed:
  • Jun Fan

    (School of Water Conservancy and Civil Engineering, Shandong Agricultural University, Taian 271000, China
    These authors contributed equally to this work and should be considered co-first authors.)

  • Haotian Dong

    (School of Energy and Power Engineering, Shandong University, Jinan 250061, China
    These authors contributed equally to this work and should be considered co-first authors.)

  • Xiangyang Xu

    (Energy Engineering Excellence (ENEXIO) Energy Technology (Beijing) Co., Ltd, Beijing 100600, China)

  • De Teng

    (Energy Engineering Excellence (ENEXIO) Energy Technology (Beijing) Co., Ltd, Beijing 100600, China)

  • Bo Yan

    (Energy Engineering Excellence (ENEXIO) Energy Technology (Beijing) Co., Ltd, Beijing 100600, China)

  • Yuanbin Zhao

    (School of Energy and Power Engineering, Shandong University, Jinan 250061, China)

Abstract

In air-cooled power units, an air-cooled condenser (ACC) is usually accompanied by mechanical draft wet-cooling towers (MCTs) so as to meet the severe cooling requirements of air-cooling auxiliary apparatuses, such as water ring vacuum pumps. When running, both the ACC and MCTs affected each other through their aerodynamic fields. To make the effect of MCTs on the cooling performance of the ACC more prominent, a three-dimensional (3D) numerical model was established for one 2 × 660 MW air-cooling power plant, with full consideration the ACC, MCTs and adjacent main workshops, which was validated by design data and published test results. By numerical simulation, we obtained the effect of hot air recirculation (HAR) on the cooling performance of the ACC under different working conditions and the effect of MCTs on the cooling performance of the ACC. The results showed that as the ambient wind speed increases, the hot recirculation rate (HRR) of the ACC increased and changed significantly with the change of wind directions. An increase in ambient temperature can cause a significant rise in back pressure of the ACC. The exhaust of the MCTs partially entered the ACC under the influence of ambient wind, and the HRR in the affected cooling units was higher than that of the nearby unaffected cooling units. When the MCTs were turned off, the overall HRR of the ACC decreased. The presence of MCTs had a local influence on the cooling performance of only two cooling units, and then slightly impacted the overall cooling performance of the ACC, which provides a good insight into the arrangement optimization of the ACC and the MCTs.

Suggested Citation

  • Jun Fan & Haotian Dong & Xiangyang Xu & De Teng & Bo Yan & Yuanbin Zhao, 2019. "Numerical Investigation on the Influence of Mechanical Draft Wet-Cooling Towers on the Cooling Performance of Air-Cooled Condenser with Complex Building Environment," Energies, MDPI, vol. 12(23), pages 1-16, November.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:23:p:4560-:d:292462
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/23/4560/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/23/4560/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yu, F.W. & Chan, K.T., 2007. "Modelling of a condenser-fan control for an air-cooled centrifugal chiller," Applied Energy, Elsevier, vol. 84(11), pages 1117-1135, November.
    2. Ge, Yunting & Cropper, Roy, 2004. "Air-cooled condensers in retail systems using R22 and R404A refrigerants," Applied Energy, Elsevier, vol. 78(1), pages 95-110, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zbigniew Buryn & Anna Kuczuk & Janusz Pospolita & Rafał Smejda & Katarzyna Widera, 2021. "Impact of Weather Conditions on the Operation of Power Unit Cooling Towers 905 MWe," Energies, MDPI, vol. 14(19), pages 1-19, October.
    2. Haotian Dong & Dawei Wan & Minghua Liu & Tiefeng Chen & Shasha Gao & Yuanbin Zhao, 2020. "Evaluation of the Hot Air Recirculation Effect and Relevant Empirical Formulae Applicability for Mechanical Draft Wet Cooling Towers," Energies, MDPI, vol. 13(13), pages 1-20, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Lei & Yang, Lijun & Du, Xiaoze & Yang, Yongping, 2016. "A novel layout of air-cooled condensers to improve thermo-flow performances," Applied Energy, Elsevier, vol. 165(C), pages 244-259.
    2. Yang, L.J. & Wang, M.H. & Du, X.Z. & Yang, Y.P., 2012. "Trapezoidal array of air-cooled condensers to restrain the adverse impacts of ambient winds in a power plant," Applied Energy, Elsevier, vol. 99(C), pages 402-413.
    3. Yu, F.W. & Chan, K.T., 2010. "Simulation and electricity savings estimation of air-cooled centrifugal chiller system with mist pre-cooling," Applied Energy, Elsevier, vol. 87(4), pages 1198-1206, April.
    4. Comakli, K. & Simsek, F. & Comakli, O. & Sahin, B., 2009. "Determination of optimum working conditions R22 and R404A refrigerant mixtures in heat-pumps using Taguchi method," Applied Energy, Elsevier, vol. 86(11), pages 2451-2458, November.
    5. Zhou, Guobing & Zhang, Yufeng, 2010. "Performance of a split-type air conditioner matched with coiled adiabatic capillary tubes using HCFC22 and HC290," Applied Energy, Elsevier, vol. 87(5), pages 1522-1528, May.
    6. Yang, Tingting & Wang, Wei & Zeng, Deliang & Liu, Jizhen & Cui, Can, 2017. "Closed-loop optimization control on fan speed of air-cooled steam condenser units for energy saving and rapid load regulation," Energy, Elsevier, vol. 135(C), pages 394-404.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:23:p:4560-:d:292462. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.