IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i23p4448-d289855.html
   My bibliography  Save this article

Towards Energy Efficient Scheduling of Manufacturing Systems through Collaboration between Cyber Physical Production and Energy Systems

Author

Listed:
  • Maroua Nouiri

    (LAMIH, UMR CNRS 8201, Université Polytechnique Hauts-de-France, 59313 Valenciennes, France
    LS2N UMR CNRS 6004, Université de Nantes, 2 Avenue du Prof. Jean Rouxel, 44475 Carquefou, France)

  • Damien Trentesaux

    (LAMIH, UMR CNRS 8201, Université Polytechnique Hauts-de-France, 59313 Valenciennes, France)

  • Abdelghani Bekrar

    (LAMIH, UMR CNRS 8201, Université Polytechnique Hauts-de-France, 59313 Valenciennes, France)

Abstract

Currently, enhancing sustainability, and in particular reducing energy consumption, is a huge challenge for manufacturing enterprises. The vision of the fourth industrial revolution (so-called “industry 4.0”) is not only to optimize production and minimize costs, but also to reduce energy consumption and enhance product life-cycle management. To address this challenge, a multi-agent architecture aimed at elaborating predictive and reactive energy-efficient scheduling through collaboration between cyber physical production and energy systems is proposed in this paper. Smart, sustainable decision tools for cyber physical production systems (CPPS) and cyber physical energy systems (CPES) are proposed. The decision tools are data-driven, agent-based models with dynamic interaction. The main aim of agent behaviours in the cyber part of CPPS is to find a predictive and reactive energy-efficient schedule. The role of agents in CPES is to control the energy consumption of connected factories and switch between the different renewable energy sources. Dynamic mechanisms in CPPS and CPES are proposed to adjust the energy consumption of production systems based on the availability of the renewable energy. The proposed approach was validated on a physically distributed architecture using networked embedded systems and real-time data sharing from connected sensors in each cyber physical systems. A series of instances inspired from the literature were tested to assess the performance of the proposed method. The results prove the efficiency of the proposed approach in adapting the energy consumption of connected factories based on a real-time energy threshold.

Suggested Citation

  • Maroua Nouiri & Damien Trentesaux & Abdelghani Bekrar, 2019. "Towards Energy Efficient Scheduling of Manufacturing Systems through Collaboration between Cyber Physical Production and Energy Systems," Energies, MDPI, vol. 12(23), pages 1-30, November.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:23:p:4448-:d:289855
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/23/4448/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/23/4448/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Konstantinos, Ioannou & Georgios, Tsantopoulos & Garyfalos, Arabatzis, 2019. "A Decision Support System methodology for selecting wind farm installation locations using AHP and TOPSIS: Case study in Eastern Macedonia and Thrace region, Greece," Energy Policy, Elsevier, vol. 132(C), pages 232-246.
    2. Wang, Wei & Hong, Tianzhen & Li, Nan & Wang, Ryan Qi & Chen, Jiayu, 2019. "Linking energy-cyber-physical systems with occupancy prediction and interpretation through WiFi probe-based ensemble classification," Applied Energy, Elsevier, vol. 236(C), pages 55-69.
    3. Konstantinos Ioannou & Georgios Tsantopoulos & Garyfallos Arabatzis & Zacharoula Andreopoulou & Eleni Zafeiriou, 2018. "A Spatial Decision Support System Framework for the Evaluation of Biomass Energy Production Locations: Case Study in the Regional Unit of Drama, Greece," Sustainability, MDPI, vol. 10(2), pages 1-22, February.
    4. May, Gökan & Stahl, Bojan & Taisch, Marco, 2016. "Energy management in manufacturing: Toward eco-factories of the future – A focus group study," Applied Energy, Elsevier, vol. 164(C), pages 628-638.
    5. Delgado, Alberto & Jensen, Rune Møller & Janstrup, Kira & Rose, Trine Høyer & Andersen, Kent Høj, 2012. "A Constraint Programming model for fast optimal stowage of container vessel bays," European Journal of Operational Research, Elsevier, vol. 220(1), pages 251-261.
    6. Keil, Sophia, 2017. "Design of a cyber-physical production system for semiconductor manufacturing," Chapters from the Proceedings of the Hamburg International Conference of Logistics (HICL), in: Kersten, Wolfgang & Blecker, Thorsten & Ringle, Christian M. (ed.), Digitalization in Supply Chain Management and Logistics: Smart and Digital Solutions for an Industry 4.0 Environment. Proceedings of the Hamburg Inter, volume 23, pages 319-340, Hamburg University of Technology (TUHH), Institute of Business Logistics and General Management.
    7. Guo-Sheng Liu & Hai-Dong Yang & Ming-Bao Cheng, 2017. "A three-stage decomposition approach for energy-aware scheduling with processing-time-dependent product quality," International Journal of Production Research, Taylor & Francis Journals, vol. 55(11), pages 3073-3091, June.
    8. Vittaldas V. Prabhu & Damien Trentesaux & Marco Taisch, 2015. "Energy-aware manufacturing operations," International Journal of Production Research, Taylor & Francis Journals, vol. 53(23), pages 6994-7004, December.
    9. May, Gökan & Barletta, Ilaria & Stahl, Bojan & Taisch, Marco, 2015. "Energy management in production: A novel method to develop key performance indicators for improving energy efficiency," Applied Energy, Elsevier, vol. 149(C), pages 46-61.
    10. Yevgenia Mikhaylidi & Hussein Naseraldin & Liron Yedidsion, 2015. "Operations scheduling under electricity time-varying prices," International Journal of Production Research, Taylor & Francis Journals, vol. 53(23), pages 7136-7157, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Anupama Prashar, 2023. "Title: production planning and control in industry 4.0 environment: a morphological analysis of literature and research agenda," Journal of Intelligent Manufacturing, Springer, vol. 34(6), pages 2513-2528, August.
    2. Justyna Smagowicz & Cezary Szwed & Dawid Dąbal & Pavel Scholz, 2022. "A Simulation Model of Power Demand Management by Manufacturing Enterprises under the Conditions of Energy Sector Transformation," Energies, MDPI, vol. 15(9), pages 1-27, April.
    3. Athar Ajaz Khan & János Abonyi, 2022. "Simulation of Sustainable Manufacturing Solutions: Tools for Enabling Circular Economy," Sustainability, MDPI, vol. 14(15), pages 1-40, August.
    4. Adrian Kampa & Iwona Paprocka, 2021. "Analysis of Energy Efficient Scheduling of the Manufacturing Line with Finite Buffer Capacity and Machine Setup and Shutdown Times," Energies, MDPI, vol. 14(21), pages 1-25, November.
    5. Borna Dasović & Uroš Klanšek, 2022. "A Review of Energy-Efficient and Sustainable Construction Scheduling Supported with Optimization Tools," Energies, MDPI, vol. 15(7), pages 1-17, March.
    6. Paula Morella & María Pilar Lambán & Jesús Antonio Royo & Juan Carlos Sánchez, 2021. "The Importance of Implementing Cyber Physical Systems to Acquire Real-Time Data and Indicators," J, MDPI, vol. 4(2), pages 1-7, May.
    7. Verónica Sansabas-Villalpando & Iván Juan Carlos Pérez-Olguín & Luis Asunción Pérez-Domínguez & Luis Alberto Rodríguez-Picón & Luis Carlos Mendez-González, 2019. "CODAS HFLTS Method to Appraise Organizational Culture of Innovation and Complex Technological Changes Environments," Sustainability, MDPI, vol. 11(24), pages 1-28, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Amir Abolhassani & Gale Boyd & Majid Jaridi & Bhaskaran Gopalakrishnan & James Harner, 2023. "“Is Energy That Different from Labor?” Similarity in Determinants of Intensity for Auto Assembly Plants," Energies, MDPI, vol. 16(4), pages 1-35, February.
    2. Sun, Jingchao & Na, Hongming & Yan, Tianyi & Che, Zichang & Qiu, Ziyang & Yuan, Yuxing & Li, Yingnan & Du, Tao & Song, Yanli & Fang, Xin, 2022. "Cost-benefit assessment of manufacturing system using comprehensive value flow analysis," Applied Energy, Elsevier, vol. 310(C).
    3. Konstantinos Ioannou & Dimitrios Myronidis, 2021. "Automatic Detection of Photovoltaic Farms Using Satellite Imagery and Convolutional Neural Networks," Sustainability, MDPI, vol. 13(9), pages 1-15, May.
    4. Jia, Shun & Yuan, Qinghe & Lv, Jingxiang & Liu, Ying & Ren, Dawei & Zhang, Zhongwei, 2017. "Therblig-embedded value stream mapping method for lean energy machining," Energy, Elsevier, vol. 138(C), pages 1081-1098.
    5. Konstantinos Ioannou, 2023. "On the Identification of Agroforestry Application Areas Using Object-Oriented Programming," Agriculture, MDPI, vol. 13(1), pages 1-14, January.
    6. Ateekh Ur Rehman & Mustufa Haider Abidi & Usama Umer & Yusuf Siraj Usmani, 2019. "Multi-Criteria Decision-Making Approach for Selecting Wind Energy Power Plant Locations," Sustainability, MDPI, vol. 11(21), pages 1-20, November.
    7. Favi, Claudio & Marconi, Marco & Mandolini, Marco & Germani, Michele, 2022. "Sustainable life cycle and energy management of discrete manufacturing plants in the industry 4.0 framework," Applied Energy, Elsevier, vol. 312(C).
    8. Abbas Hamze & Yassine Ouazene & Nazir Chebbo & Imane Maatouk, 2019. "Multisources of Energy Contracting Strategy with an Ecofriendly Factor and Demand Uncertainties," Energies, MDPI, vol. 12(20), pages 1-24, October.
    9. Moaaz Elkabalawy & Abobakr Al-Sakkaf & Eslam Mohammed Abdelkader & Ghasan Alfalah, 2024. "CRISP-DM-Based Data-Driven Approach for Building Energy Prediction Utilizing Indoor and Environmental Factors," Sustainability, MDPI, vol. 16(17), pages 1-21, August.
    10. Taewook Kang, 2020. "BIM-Based Human Machine Interface (HMI) Framework for Energy Management," Sustainability, MDPI, vol. 12(21), pages 1-17, October.
    11. Lia Marchi & Ernesto Antonini, 2022. "Digital Atlas of Tactics to Designing Sustainable Factories," Sustainability, MDPI, vol. 14(7), pages 1-16, April.
    12. Leonel Jorge Ribeiro Nunes & Radu Godina & João Carlos de Oliveira Matias, 2019. "Technological Innovation in Biomass Energy for the Sustainable Growth of Textile Industry," Sustainability, MDPI, vol. 11(2), pages 1-12, January.
    13. Hajo Terbrack & Thorsten Claus & Frank Herrmann, 2021. "Energy-Oriented Production Planning in Industry: A Systematic Literature Review and Classification Scheme," Sustainability, MDPI, vol. 13(23), pages 1-32, December.
    14. Fernando, Yudi & Hor, Wei Lin, 2017. "Impacts of energy management practices on energy efficiency and carbon emissions reduction: A survey of malaysian manufacturing firms," Resources, Conservation & Recycling, Elsevier, vol. 126(C), pages 62-73.
    15. Monaco, Maria Flavia & Sammarra, Marcello & Sorrentino, Gregorio, 2014. "The Terminal-Oriented Ship Stowage Planning Problem," European Journal of Operational Research, Elsevier, vol. 239(1), pages 256-265.
    16. Mohammed Ifkirne & Houssam El Bouhi & Siham Acharki & Quoc Bao Pham & Abdelouahed Farah & Nguyen Thi Thuy Linh, 2022. "Multi-Criteria GIS-Based Analysis for Mapping Suitable Sites for Onshore Wind Farms in Southeast France," Land, MDPI, vol. 11(10), pages 1-26, October.
    17. Matteo Piccioni & Fabrizio Martini & Chiara Martini & Claudia Toro, 2024. "Evaluation of Energy Performance Indicators and Energy Saving Opportunities for the Italian Rubber Manufacturing Industry," Energies, MDPI, vol. 17(7), pages 1-23, March.
    18. Fábio de Oliveira Neves & Henrique Ewbank & José Arnaldo Frutuoso Roveda & Andrea Trianni & Fernando Pinhabel Marafão & Sandra Regina Monteiro Masalskiene Roveda, 2022. "Economic and Production-Related Implications for Industrial Energy Efficiency: A Logistic Regression Analysis on Cross-Cutting Technologies," Energies, MDPI, vol. 15(4), pages 1-19, February.
    19. Petri Helo & Henri Paukku & Tero Sairanen, 2021. "Containership cargo profiles, cargo systems, and stowage capacity: key performance indicators," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 23(1), pages 28-48, March.
    20. Mao Tan & Bin Duan & Yongxin Su, 2018. "Economic batch sizing and scheduling on parallel machines under time-of-use electricity pricing," Operational Research, Springer, vol. 18(1), pages 105-122, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:23:p:4448-:d:289855. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.