IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v210y2018icp487-498.html
   My bibliography  Save this article

The potential impact of Brexit on the energy, water and food nexus in the UK: A fuzzy cognitive mapping approach

Author

Listed:
  • Ziv, Guy
  • Watson, Elizabeth
  • Young, Dylan
  • Howard, David C.
  • Larcom, Shaun T.
  • Tanentzap, Andrew J.

Abstract

Energy is one of the cornerstones essential for human life, along with other services such as water and food. Understanding how the different services in the energy-water-food (EWF) nexus interact and are perceived by different actors is key to achieving sustainability. In this paper, we derive a model of the EWF nexus using fuzzy cognitive mapping (FCM). Data were collected in a two-step approach from workshops with researchers and stakeholders involved in the three focal sectors. Four FCMs were developed; one for each of the EWF sectors, and one for the interactions that create the nexus between EWF. The FCM represents the combined views of the groups who participated in the workshops, the importance and limitations of which is discussed. To demonstrate its effectiveness, the aggregated FCM was applied to predict the impacts on the EWF nexus of four scenarios under which the United Kingdom would depart from the European Union (i.e. Brexit). The FCM indicated that energy-related concepts had the largest influence on the EWF nexus and that EWF demand will decrease most under a ‘hard-Brexit’ scenario. The demand for energy was shown to decline relatively less than other services and was strongly associated with gross domestic product (GDP), whereas UK population size had a stronger effect on water and food demand. Overall, we found a threefold change across all concepts in scenarios without freedom of movement, contribution to the EU budget, and increased policy devolution to the UK.

Suggested Citation

  • Ziv, Guy & Watson, Elizabeth & Young, Dylan & Howard, David C. & Larcom, Shaun T. & Tanentzap, Andrew J., 2018. "The potential impact of Brexit on the energy, water and food nexus in the UK: A fuzzy cognitive mapping approach," Applied Energy, Elsevier, vol. 210(C), pages 487-498.
  • Handle: RePEc:eee:appene:v:210:y:2018:i:c:p:487-498
    DOI: 10.1016/j.apenergy.2017.08.033
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261917310450
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2017.08.033?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Shaoqing & Chen, Bin, 2016. "Urban energy–water nexus: A network perspective," Applied Energy, Elsevier, vol. 184(C), pages 905-914.
    2. Bazilian, Morgan & Rogner, Holger & Howells, Mark & Hermann, Sebastian & Arent, Douglas & Gielen, Dolf & Steduto, Pasquale & Mueller, Alexander & Komor, Paul & Tol, Richard S.J. & Yumkella, Kandeh K., 2011. "Considering the energy, water and food nexus: Towards an integrated modelling approach," Energy Policy, Elsevier, vol. 39(12), pages 7896-7906.
    3. Alexandra S Penn & Christopher J K Knight & David J B Lloyd & Daniele Avitabile & Kasper Kok & Frank Schiller & Amy Woodward & Angela Druckman & Lauren Basson, 2013. "Participatory Development and Analysis of a Fuzzy Cognitive Map of the Establishment of a Bio-Based Economy in the Humber Region," PLOS ONE, Public Library of Science, vol. 8(11), pages 1-14, November.
    4. Unknown, 2016. "Energy for Sustainable Development," Conference Proceedings 253270, Guru Arjan Dev Institute of Development Studies (IDSAsr).
    5. Topping, Chris J. & Høye, Toke T. & Olesen, Carsten Riis, 2010. "Opening the black box—Development, testing and documentation of a mechanistically rich agent-based model," Ecological Modelling, Elsevier, vol. 221(2), pages 245-255.
    6. Gray, Steven & Chan, Alex & Clark, Dan & Jordan, Rebecca, 2012. "Modeling the integration of stakeholder knowledge in social–ecological decision-making: Benefits and limitations to knowledge diversity," Ecological Modelling, Elsevier, vol. 229(C), pages 88-96.
    7. David Tilman & Michael Clark, 2014. "Global diets link environmental sustainability and human health," Nature, Nature, vol. 515(7528), pages 518-522, November.
    8. Chen, Shaoqing & Chen, Bin, 2017. "Coupling of carbon and energy flows in cities: A meta-analysis and nexus modelling," Applied Energy, Elsevier, vol. 194(C), pages 774-783.
    9. Soytas, Ugur & Sari, Ramazan, 2003. "Energy consumption and GDP: causality relationship in G-7 countries and emerging markets," Energy Economics, Elsevier, vol. 25(1), pages 33-37, January.
    10. Mike Hightower & Suzanne A. Pierce, 2008. "The energy challenge," Nature, Nature, vol. 452(7185), pages 285-286, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Junfei Chen & Tonghui Ding & Ming Li & Huimin Wang, 2020. "Multi-Objective Optimization of a Regional Water–Energy–Food System Considering Environmental Constraints: A Case Study of Inner Mongolia, China," IJERPH, MDPI, vol. 17(18), pages 1-22, September.
    2. Guedes, E.F. & Ferreira, Paulo & Dionísio, Andreia & Zebende, G.F., 2019. "An econophysics approach to study the effect of BREXIT referendum on European Union stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 1175-1182.
    3. Paulo Ferreira & Éder Pereira, 2019. "The impact of the Brexit referendum on British and European Union bank shares: a cross-correlation analysis with national indices," Economics Bulletin, AccessEcon, vol. 39(1), pages 335-346.
    4. Pramod K. Singh & Konstantinos Papageorgiou & Harpalsinh Chudasama & Elpiniki I. Papageorgiou, 2019. "Evaluating the Effectiveness of Climate Change Adaptations in the World’s Largest Mangrove Ecosystem," Sustainability, MDPI, vol. 11(23), pages 1-17, November.
    5. Neofytou, H. & Nikas, A. & Doukas, H., 2020. "Sustainable energy transition readiness: A multicriteria assessment index," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    6. Singh, Pramod K. & Chudasama, Harpalsinh, 2023. "Geo-information-enabled village level micro-planning for enhancing common good," Technological Forecasting and Social Change, Elsevier, vol. 189(C).
    7. Jue Wang & Keyi Ju & Xiaozhuo Wei, 2022. "Where Will ‘Water-Energy-Food’ Research Go Next?—Visualisation Review and Prospect," Sustainability, MDPI, vol. 14(13), pages 1-19, June.
    8. Sandra Venghaus & Carolin Märker & Sophia Dieken & Florian Siekmann, 2019. "Linking Environmental Policy Integration and the Water-Energy-Land-(Food-)Nexus: A Review of the European Union’s Energy, Water, and Agricultural Policies," Energies, MDPI, vol. 12(23), pages 1-16, November.
    9. Konstantinos Papageorgiou & Gustavo Carvalho & Elpiniki I. Papageorgiou & Dionysis Bochtis & George Stamoulis, 2020. "Decision-Making Process for Photovoltaic Solar Energy Sector Development using Fuzzy Cognitive Map Technique," Energies, MDPI, vol. 13(6), pages 1-23, March.
    10. Mohammed Adil Sait & Uchendu Eugene Chigbu & Iqbal Hamiduddin & Walter Timo De Vries, 2018. "Renewable Energy as an Underutilised Resource in Cities: Germany’s ‘Energiewende’ and Lessons for Post-Brexit Cities in the United Kingdom," Resources, MDPI, vol. 8(1), pages 1-27, December.
    11. Pramod K Singh & Harpalsinh Chudasama, 2020. "Evaluating poverty alleviation strategies in a developing country," PLOS ONE, Public Library of Science, vol. 15(1), pages 1-23, January.
    12. Chini, Christopher M. & Stillwell, Ashlynn S., 2020. "The changing virtual water trade network of the European electric grid," Applied Energy, Elsevier, vol. 260(C).
    13. Adrian Delos Santos Almoradie & Nina Rholan Houngue & Kossi Komi & Julien Adounkpe & Mariele Evers, 2023. "Transboundary Collaborative Modeling: Consensual Identification and Ranking of Flood Adaptation Measures—A Case Study in the Mono River Basin, Benin, and Togo," Sustainability, MDPI, vol. 15(15), pages 1-17, July.
    14. Ghaboulian Zare, Sara & Alipour, Mohammad & Hafezi, Mehdi & Stewart, Rodney A. & Rahman, Anisur, 2022. "Examining wind energy deployment pathways in complex macro-economic and political settings using a fuzzy cognitive map-based method," Energy, Elsevier, vol. 238(PA).
    15. Cristian Silviu Simionescu & Ciprian Petrisor Plenovici & Constanta Laura Augustin & Maria Magdalena Turek Rahoveanu & Adrian Turek Rahoveanu & Gheorghe Adrian Zugravu, 2022. "Fuzzy Quality Certification of Wheat," Agriculture, MDPI, vol. 12(10), pages 1-13, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Soprani, Stefano & Marongiu, Fabrizio & Christensen, Ludvig & Alm, Ole & Petersen, Kenni Dinesen & Ulrich, Thomas & Engelbrecht, Kurt, 2019. "Design and testing of a horizontal rock bed for high temperature thermal energy storage," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    2. Chen, Zi-yue & Huang, Zhen-hai & Nie, Pu-yan, 2018. "Industrial characteristics and consumption efficiency from a nexus perspective – Based on Anhui’s Empirical Statistics," Energy Policy, Elsevier, vol. 115(C), pages 281-290.
    3. Meng, Fanxin & Liu, Gengyuan & Liang, Sai & Su, Meirong & Yang, Zhifeng, 2019. "Critical review of the energy-water-carbon nexus in cities," Energy, Elsevier, vol. 171(C), pages 1017-1032.
    4. Ouyang, Yaofu & Li, Peng, 2018. "On the nexus of financial development, economic growth, and energy consumption in China: New perspective from a GMM panel VAR approach," Energy Economics, Elsevier, vol. 71(C), pages 238-252.
    5. Lucia de Strasser, 2017. "Calling for Nexus Thinking in Africa’s Energy Planning," ESP: Energy Scenarios and Policy 263161, Fondazione Eni Enrico Mattei (FEEM).
    6. Yuan, Mei-Hua & Lo, Shang-Lien, 2020. "Developing indicators for the monitoring of the sustainability of food, energy, and water," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    7. Farboud Khatami & Erfan Goharian, 2022. "Beyond Profitable Shifts to Green Energies, towards Energy Sustainability," Sustainability, MDPI, vol. 14(8), pages 1-28, April.
    8. Wu, X.D. & Chen, G.Q., 2017. "Energy and water nexus in power generation: The surprisingly high amount of industrial water use induced by solar power infrastructure in China," Applied Energy, Elsevier, vol. 195(C), pages 125-136.
    9. Hannah Goozee, 2017. "Energy, poverty and development: a primer for the Sustainable Development Goals," Working Papers 156, International Policy Centre for Inclusive Growth.
    10. Bieber, Niclas & Ker, Jen Ho & Wang, Xiaonan & Triantafyllidis, Charalampos & van Dam, Koen H. & Koppelaar, Rembrandt H.E.M. & Shah, Nilay, 2018. "Sustainable planning of the energy-water-food nexus using decision making tools," Energy Policy, Elsevier, vol. 113(C), pages 584-607.
    11. Liu, Yitong & Chen, Bin & Wei, Wendong & Shao, Ling & Li, Zhi & Jiang, Weizhong & Chen, Guoqian, 2020. "Global water use associated with energy supply, demand and international trade of China," Applied Energy, Elsevier, vol. 257(C).
    12. Jamal Sekali & Mohamed Bouzahzah, 2019. "Financial Development and Environmental Quality: Empirical Evidence for Morocco," International Journal of Energy Economics and Policy, Econjournals, vol. 9(2), pages 67-74.
    13. Ding, Tao & Liang, Liang & Zhou, Kaile & Yang, Min & Wei, Yuqi, 2020. "Water-energy nexus: The origin, development and prospect," Ecological Modelling, Elsevier, vol. 419(C).
    14. Pritee Sharma & Salla Nithyanth Kumar, 0. "The global governance of water, energy, and food nexus: allocation and access for competing demands," International Environmental Agreements: Politics, Law and Economics, Springer, vol. 0, pages 1-15.
    15. Sharifzadeh, Mahdi & Hien, Raymond Khoo Teck & Shah, Nilay, 2019. "China’s roadmap to low-carbon electricity and water: Disentangling greenhouse gas (GHG) emissions from electricity-water nexus via renewable wind and solar power generation, and carbon capture and sto," Applied Energy, Elsevier, vol. 235(C), pages 31-42.
    16. Wang, Xue-Chao & Jiang, Peng & Yang, Lan & Fan, Yee Van & Klemeš, Jiří Jaromír & Wang, Yutao, 2021. "Extended water-energy nexus contribution to environmentally-related sustainable development goals," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    17. Ahmad, Ashfaq & Zhao, Yuhuan & Shahbaz, Muhammad & Bano, Sadia & Zhang, Zhonghua & Wang, Song & Liu, Ya, 2016. "Carbon emissions, energy consumption and economic growth: An aggregate and disaggregate analysis of the Indian economy," Energy Policy, Elsevier, vol. 96(C), pages 131-143.
    18. Ju, Yiyi, 2019. "Revealing the bilateral dependencies and policy implication of food production of Japan and China: From the perspective of Food-Energy-Water nexus," Ecological Modelling, Elsevier, vol. 391(C), pages 29-39.
    19. Chen, Pi-Cheng & Alvarado, Valeria & Hsu, Shu-Chien, 2018. "Water energy nexus in city and hinterlands: Multi-regional physical input-output analysis for Hong Kong and South China," Applied Energy, Elsevier, vol. 225(C), pages 986-997.
    20. Nhamo, Luxon & Ndlela, B. & Nhemachena, Charles & Mabhaudhi, T. & Mpandeli, S. & Matchaya, Greenwell, 2018. "The water-energy-food nexus: climate risks and opportunities in southern Africa," Papers published in Journals (Open Access), International Water Management Institute, pages 10(5):1-18..

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:210:y:2018:i:c:p:487-498. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.