IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i22p4396-d288586.html
   My bibliography  Save this article

A Novel Dual Fuel Reaction Mechanism for Ignition in Natural Gas–Diesel Combustion

Author

Listed:
  • Sebastian Schuh

    (Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Getreidemarkt 9/166, 1060 Vienna, Austria)

  • Jens Frühhaber

    (Institute for Powertrains and Automotive Technology, TU Wien, Getreidemarkt 9/315, 1060 Vienna, Austria)

  • Thomas Lauer

    (Institute for Powertrains and Automotive Technology, TU Wien, Getreidemarkt 9/315, 1060 Vienna, Austria)

  • Franz Winter

    (Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Getreidemarkt 9/166, 1060 Vienna, Austria)

Abstract

In this study, a reaction mechanism is presented that is optimized for the simulation of the dual fuel combustion process using n -heptane and a mixture of methane/propane as surrogate fuels for diesel and natural gas, respectively. By comparing the measured and calculated ignition delay times (IDTs) of different homogeneous methane–propane– n -heptane mixtures, six different n -heptane mechanisms were investigated and evaluated. The selected mechanism was used for computational fluid dynamics (CFD) simulations to calculate the ignition of a diesel spray injected into air and a natural gas–air mixture. The observed deviations between the simulation results and the measurements performed with a rapid compression expansion machine (RCEM) and a combustion vessel motivated the adaptation of the mechanism by adjusting the Arrhenius parameters of individual reactions. For the identification of the reactions suitable for the mechanism adaption, sensitivity and flow analyzes were performed. The adjusted mechanism is able to describe ignition phenomena in the context of natural gas–diesel, i.e., dual fuel combustion.

Suggested Citation

  • Sebastian Schuh & Jens Frühhaber & Thomas Lauer & Franz Winter, 2019. "A Novel Dual Fuel Reaction Mechanism for Ignition in Natural Gas–Diesel Combustion," Energies, MDPI, vol. 12(22), pages 1-32, November.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:22:p:4396-:d:288586
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/22/4396/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/22/4396/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Li, Yu & Li, Hailin & Guo, Hongsheng & Li, Yongzhi & Yao, Mingfa, 2017. "A numerical investigation on methane combustion and emissions from a natural gas-diesel dual fuel engine using CFD model," Applied Energy, Elsevier, vol. 205(C), pages 153-162.
    2. Sebastian Schuh & Ajoy Kumar Ramalingam & Heiko Minwegen & Karl Alexander Heufer & Franz Winter, 2019. "Experimental Investigation and Benchmark Study of Oxidation of Methane–Propane–n-Heptane Mixtures at Pressures up to 100 bar," Energies, MDPI, vol. 12(18), pages 1-20, September.
    3. Al-Saleh, M.A. & Duffuaa, S.O. & Al-Marhoun, M.A. & Al-Zayer, J.A., 1991. "Impact of crude oil production on the petrochemical industry in Saudi Arabia," Energy, Elsevier, vol. 16(8), pages 1089-1099.
    4. Lucas Eder & Marko Ban & Gerhard Pirker & Milan Vujanovic & Peter Priesching & Andreas Wimmer, 2018. "Development and Validation of 3D-CFD Injection and Combustion Models for Dual Fuel Combustion in Diesel Ignited Large Gas Engines," Energies, MDPI, vol. 11(3), pages 1-23, March.
    5. Karavalakis, Georgios & Hajbabaei, Maryam & Durbin, Thomas D. & Johnson, Kent C. & Zheng, Zhongqing & Miller, Wayne J., 2013. "The effect of natural gas composition on the regulated emissions, gaseous toxic pollutants, and ultrafine particle number emissions from a refuse hauler vehicle," Energy, Elsevier, vol. 50(C), pages 280-291.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sebastian Schuh & Franz Winter, 2020. "Dual Fuel Reaction Mechanism 2.0 including NO x Formation and Laminar Flame Speed Calculations Using Methane/Propane/ n -Heptane Fuel Blends," Energies, MDPI, vol. 13(4), pages 1-31, February.
    2. Jens Frühhaber & Thomas Lauer, 2021. "Numerical Investigation of the Turbulent Flame Propagation in Dual Fuel Engines by Means of Large Eddy Simulation," Energies, MDPI, vol. 14(16), pages 1-25, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sebastian Schuh & Franz Winter, 2020. "Dual Fuel Reaction Mechanism 2.0 including NO x Formation and Laminar Flame Speed Calculations Using Methane/Propane/ n -Heptane Fuel Blends," Energies, MDPI, vol. 13(4), pages 1-31, February.
    2. Sebastian Schuh & Ajoy Kumar Ramalingam & Heiko Minwegen & Karl Alexander Heufer & Franz Winter, 2019. "Experimental Investigation and Benchmark Study of Oxidation of Methane–Propane–n-Heptane Mixtures at Pressures up to 100 bar," Energies, MDPI, vol. 12(18), pages 1-20, September.
    3. Li, Yu & Li, Hailin & Guo, Hongsheng & Wang, Hu & Yao, Mingfa, 2018. "A numerical study on the chemical kinetics process during auto-ignition of n-heptane in a direct injection compression ignition engine," Applied Energy, Elsevier, vol. 212(C), pages 909-918.
    4. Van Chien Pham & Jae-Hyuk Choi & Beom-Seok Rho & Jun-Soo Kim & Kyunam Park & Sang-Kyun Park & Van Vang Le & Won-Ju Lee, 2021. "A Numerical Study on the Combustion Process and Emission Characteristics of a Natural Gas-Diesel Dual-Fuel Marine Engine at Full Load," Energies, MDPI, vol. 14(5), pages 1-28, March.
    5. Pengfei Duan & Chaokui Qin & Zhiguang Chen, 2019. "Experimental Study of the Influence of Natural Gas Constituents on CO Emission from Chinese Gas Cooker," Energies, MDPI, vol. 12(20), pages 1-16, October.
    6. Zhang, Wei & Chang, Shaoyue & Wu, Wei & Dong, Lihui & Chen, Zhaohui & Chen, Guisheng, 2019. "A diesel/natural gas dual fuel mechanism constructed to reveal combustion and emission characteristics," Energy, Elsevier, vol. 179(C), pages 59-75.
    7. Jingrui Li & Jietuo Wang & Teng Liu & Jingjin Dong & Bo Liu & Chaohui Wu & Ying Ye & Hu Wang & Haifeng Liu, 2019. "An Investigation of the Influence of Gas Injection Rate Shape on High-Pressure Direct-Injection Natural Gas Marine Engines," Energies, MDPI, vol. 12(13), pages 1-18, July.
    8. Maria Cristina Cameretti & Roberta De Robbio & Ezio Mancaruso & Marco Palomba, 2022. "CFD Study of Dual Fuel Combustion in a Research Diesel Engine Fueled by Hydrogen," Energies, MDPI, vol. 15(15), pages 1-21, July.
    9. Shu, Jun & Fu, Jianqin & Liu, Jingping & Ma, Yinjie & Wang, Shuqian & Deng, Banglin & Zeng, Dongjian, 2019. "Effects of injector spray angle on combustion and emissions characteristics of a natural gas (NG)-diesel dual fuel engine based on CFD coupled with reduced chemical kinetic model," Applied Energy, Elsevier, vol. 233, pages 182-195.
    10. Ahmed Benlaria & Naima Sadaoui & Naeimah Fahad S. Almawishir & Houcine Benlaria, 2024. "Navigating the Oil-environment Nexus: Saudi Arabia’s Challenge in Sustainable Development," International Journal of Energy Economics and Policy, Econjournals, vol. 14(5), pages 292-300, September.
    11. Ahmad, Zeeshan & Kaario, Ossi & Qiang, Cheng & Vuorinen, Ville & Larmi, Martti, 2019. "A parametric investigation of diesel/methane dual-fuel combustion progression/stages in a heavy-duty optical engine," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    12. Barouch Giechaskiel, 2018. "Solid Particle Number Emission Factors of Euro VI Heavy-Duty Vehicles on the Road and in the Laboratory," IJERPH, MDPI, vol. 15(2), pages 1-24, February.
    13. Chen, Wei & Pan, Jianfeng & Liu, Yangxian & Fan, Baowei & Liu, Hongjun & Otchere, Peter, 2019. "Numerical investigation of direct injection stratified charge combustion in a natural gas-diesel rotary engine," Applied Energy, Elsevier, vol. 233, pages 453-467.
    14. Meng, Xiangyu & Zhou, Yihui & Yang, Tianhao & Long, Wuqiang & Bi, Mingshu & Tian, Jiangping & Lee, Chia-Fon F., 2020. "An experimental investigation of a dual-fuel engine by using bio-fuel as the additive," Renewable Energy, Elsevier, vol. 147(P1), pages 2238-2249.
    15. Ma, Baodong & Yao, Anren & Yao, Chunde & Wang, Wenchao & Ai, Youkai, 2021. "Numerical investigation and experimental validation on the leakage of methanol and formaldehyde in diesel methanol dual fuel engine with different valve overlap," Applied Energy, Elsevier, vol. 300(C).
    16. Thomas Lauer & Jens Frühhaber, 2020. "Towards a Predictive Simulation of Turbulent Combustion?—An Assessment for Large Internal Combustion Engines," Energies, MDPI, vol. 14(1), pages 1-26, December.
    17. Hajbabaei, Maryam & Karavalakis, Georgios & Johnson, Kent C. & Lee, Linda & Durbin, Thomas D., 2013. "Impact of natural gas fuel composition on criteria, toxic, and particle emissions from transit buses equipped with lean burn and stoichiometric engines," Energy, Elsevier, vol. 62(C), pages 425-434.
    18. Shen, Zhaojie & Wang, Xinyan & Zhao, Hua & Lin, Bo & Shen, Yitao & Yang, Jianguo, 2021. "Numerical investigation of natural gas-diesel dual-fuel engine with different piston geometries and radial clearances," Energy, Elsevier, vol. 220(C).
    19. Amin Paykani, 2021. "Comparative Study on Chemical Kinetics Mechanisms for Methane-Based Fuel Mixtures under Engine-Relevant Conditions," Energies, MDPI, vol. 14(10), pages 1-15, May.
    20. Jens Frühhaber & Thomas Lauer, 2021. "Numerical Investigation of the Turbulent Flame Propagation in Dual Fuel Engines by Means of Large Eddy Simulation," Energies, MDPI, vol. 14(16), pages 1-25, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:22:p:4396-:d:288586. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.