IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i22p4269-d285092.html
   My bibliography  Save this article

Thermo-Economic Analysis of A Geothermal Binary Power Plant in Indonesia—A Pre-Feasibility Case Study of the Wayang Windu Site

Author

Listed:
  • Andreas Diga Pratama Putera

    (Department of Engineering Science, The University of Auckland, 20 Symonds Street, Auckland 1010, New Zealand
    Department of Chemical Engineering, Universitas Gadjah Mada, Jalan Grafika No. 2, Yogyakarta 55182, Indonesia)

  • Annisa Nurul Hidayah

    (Department of Engineering Science, The University of Auckland, 20 Symonds Street, Auckland 1010, New Zealand)

  • Alison Subiantoro

    (Department of Mechanical Engineering, The University of Auckland, 20 Symonds Street, Auckland 1010, New Zealand)

Abstract

Indonesia has a predicted geothermal potential of 29 GWe, which is the biggest in the world. With this potential, the government has the ambitious target to generate as much as 7 GWe of electricity in 2025 from geothermal energy. However, the installed capacity of geothermal power plant in Indonesia until 2019 is only 1.9 GWe. Enhancements in already-installed geothermal power plants with a binary power plant can be considered to achieve the 2025 target. In this research, a thermo-economic analysis is carried out to assess the feasibility of binary power systems to enhance the existing geothermal power plants in Indonesia. The Wayang Windu site is selected as the case study. Three working fluids, i.e., n-Pentane, isopentane, and R245fa, are compared. Two different optimization objectives are considered and compared. First, the thermal efficiency is optimized to maximize the thermodynamic performance. In the second scenario, the heat exchanger area is optimized to maximize the economic performance. Analysis of the economic profitability variables, namely the payback period and internal rate of return, shows that optimizing the heat exchangers gives better economic results when compared to optimizing the thermal efficiency. The results also show that the type of working fluid significantly affects both the thermal efficiency and economic profitability of the binary power plant. Moreover, n-Pentane has the most preferred thermo-economic performance for the geothermal conditions at Wayang Windu with the smallest payback period of 13 years and the highest internal rate of return of 11.28%.

Suggested Citation

  • Andreas Diga Pratama Putera & Annisa Nurul Hidayah & Alison Subiantoro, 2019. "Thermo-Economic Analysis of A Geothermal Binary Power Plant in Indonesia—A Pre-Feasibility Case Study of the Wayang Windu Site," Energies, MDPI, vol. 12(22), pages 1-19, November.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:22:p:4269-:d:285092
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/22/4269/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/22/4269/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zeyghami, Mehdi, 2015. "Performance analysis and binary working fluid selection of combined flash-binary geothermal cycle," Energy, Elsevier, vol. 88(C), pages 765-774.
    2. Gemelli, Alberto & Mancini, Adriano & Longhi, Sauro, 2011. "GIS-based energy-economic model of low temperature geothermal resources: A case study in the Italian Marche region," Renewable Energy, Elsevier, vol. 36(9), pages 2474-2483.
    3. Astolfi, Marco & Romano, Matteo C. & Bombarda, Paola & Macchi, Ennio, 2014. "Binary ORC (organic Rankine cycles) power plants for the exploitation of medium–low temperature geothermal sources – Part A: Thermodynamic optimization," Energy, Elsevier, vol. 66(C), pages 423-434.
    4. Shahbaz, Muhammad & Hye, Qazi Muhammad Adnan & Tiwari, Aviral Kumar & Leitão, Nuno Carlos, 2013. "Economic growth, energy consumption, financial development, international trade and CO2 emissions in Indonesia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 109-121.
    5. Astolfi, Marco & Romano, Matteo C. & Bombarda, Paola & Macchi, Ennio, 2014. "Binary ORC (Organic Rankine Cycles) power plants for the exploitation of medium–low temperature geothermal sources – Part B: Techno-economic optimization," Energy, Elsevier, vol. 66(C), pages 435-446.
    6. Toffolo, Andrea & Lazzaretto, Andrea & Manente, Giovanni & Paci, Marco, 2014. "A multi-criteria approach for the optimal selection of working fluid and design parameters in Organic Rankine Cycle systems," Applied Energy, Elsevier, vol. 121(C), pages 219-232.
    7. Bao, Junjiang & Zhao, Li, 2013. "A review of working fluid and expander selections for organic Rankine cycle," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 325-342.
    8. Pambudi, Nugroho Agung, 2018. "Geothermal power generation in Indonesia, a country within the ring of fire: Current status, future development and policy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2893-2901.
    9. Madhawa Hettiarachchi, H.D. & Golubovic, Mihajlo & Worek, William M. & Ikegami, Yasuyuki, 2007. "Optimum design criteria for an Organic Rankine cycle using low-temperature geothermal heat sources," Energy, Elsevier, vol. 32(9), pages 1698-1706.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Guokun & Ji, Dongxu & Qin, Yanzhou, 2023. "Geothermal-solar energy system integrated with hydrogen production and utilization modules for power supply-demand balancing," Energy, Elsevier, vol. 283(C).
    2. Andrea Arbula Blecich & Paolo Blecich, 2023. "Thermoeconomic Analysis of Subcritical and Supercritical Isobutane Cycles for Geothermal Power Generation," Sustainability, MDPI, vol. 15(11), pages 1-25, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Calise, Francesco & Macaluso, Adriano & Piacentino, Antonio & Vanoli, Laura, 2017. "A novel hybrid polygeneration system supplying energy and desalinated water by renewable sources in Pantelleria Island," Energy, Elsevier, vol. 137(C), pages 1086-1106.
    2. Li, Chengyu & Wang, Huaixin, 2016. "Power cycles for waste heat recovery from medium to high temperature flue gas sources – from a view of thermodynamic optimization," Applied Energy, Elsevier, vol. 180(C), pages 707-721.
    3. Yang, Min-Hsiung & Yeh, Rong-Hua, 2016. "Economic performances optimization of an organic Rankine cycle system with lower global warming potential working fluids in geothermal application," Renewable Energy, Elsevier, vol. 85(C), pages 1201-1213.
    4. Yu, Haoshui & Eason, John & Biegler, Lorenz T. & Feng, Xiao, 2017. "Simultaneous heat integration and techno-economic optimization of Organic Rankine Cycle (ORC) for multiple waste heat stream recovery," Energy, Elsevier, vol. 119(C), pages 322-333.
    5. Liu, Qiang & Shang, Linlin & Duan, Yuanyuan, 2016. "Performance analyses of a hybrid geothermal–fossil power generation system using low-enthalpy geothermal resources," Applied Energy, Elsevier, vol. 162(C), pages 149-162.
    6. van Kleef, Luuk M.T. & Oyewunmi, Oyeniyi A. & Markides, Christos N., 2019. "Multi-objective thermo-economic optimization of organic Rankine cycle (ORC) power systems in waste-heat recovery applications using computer-aided molecular design techniques," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    7. Steven Lecompte & Sanne Lemmens & Henk Huisseune & Martijn Van den Broek & Michel De Paepe, 2015. "Multi-Objective Thermo-Economic Optimization Strategy for ORCs Applied to Subcritical and Transcritical Cycles for Waste Heat Recovery," Energies, MDPI, vol. 8(4), pages 1-28, April.
    8. Francesco Calise & Davide Capuano & Laura Vanoli, 2015. "Dynamic Simulation and Exergo-Economic Optimization of a Hybrid Solar–Geothermal Cogeneration Plant," Energies, MDPI, vol. 8(4), pages 1-41, April.
    9. Moloney, Francesca & Almatrafi, Eydhah & Goswami, D.Y., 2020. "Working fluid parametric analysis for recuperative supercritical organic Rankine cycles for medium geothermal reservoir temperatures," Renewable Energy, Elsevier, vol. 147(P3), pages 2874-2881.
    10. Meroni, Andrea & Andreasen, Jesper Graa & Persico, Giacomo & Haglind, Fredrik, 2018. "Optimization of organic Rankine cycle power systems considering multistage axial turbine design," Applied Energy, Elsevier, vol. 209(C), pages 339-354.
    11. Varma, G.V. Pradeep & Srinivas, T., 2017. "Power generation from low temperature heat recovery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 402-414.
    12. Martelli, Emanuele & Capra, Federico & Consonni, Stefano, 2015. "Numerical optimization of Combined Heat and Power Organic Rankine Cycles – Part A: Design optimization," Energy, Elsevier, vol. 90(P1), pages 310-328.
    13. Liya Ren & Huaixin Wang, 2019. "Parametric Optimization and Thermodynamic Performance Comparison of Organic Trans-Critical Cycle, Steam Flash Cycle, and Steam Dual-Pressure Cycle for Waste Heat Recovery," Energies, MDPI, vol. 12(24), pages 1-22, December.
    14. Zhang, Jianan & Qin, Kan & Li, Daijin & Luo, Kai & Dang, Jianjun, 2020. "Potential of Organic Rankine Cycles for Unmanned Underwater Vehicles," Energy, Elsevier, vol. 192(C).
    15. Alvin Kiprono Bett & Saeid Jalilinasrabady, 2021. "Optimization of ORC Power Plants for Geothermal Application in Kenya by Combining Exergy and Pinch Point Analysis," Energies, MDPI, vol. 14(20), pages 1-17, October.
    16. Yang, Min-Hsiung & Yeh, Rong-Hua, 2015. "Thermo-economic optimization of an organic Rankine cycle system for large marine diesel engine waste heat recovery," Energy, Elsevier, vol. 82(C), pages 256-268.
    17. Liya Ren & Jianyu Liu & Huaixin Wang, 2020. "Thermodynamic Optimization of a Waste Heat Power System under Economic Constraint," Energies, MDPI, vol. 13(13), pages 1-23, July.
    18. Cavazzini, G. & Bari, S. & Pavesi, G. & Ardizzon, G., 2017. "A multi-fluid PSO-based algorithm for the search of the best performance of sub-critical Organic Rankine Cycles," Energy, Elsevier, vol. 129(C), pages 42-58.
    19. Amini, Ali & Mirkhani, Nima & Pakjesm Pourfard, Pedram & Ashjaee, Mehdi & Khodkar, Mohammad Amin, 2015. "Thermo-economic optimization of low-grade waste heat recovery in Yazd combined-cycle power plant (Iran) by a CO2 transcritical Rankine cycle," Energy, Elsevier, vol. 86(C), pages 74-84.
    20. Braimakis, Konstantinos & Karellas, Sotirios, 2017. "Integrated thermoeconomic optimization of standard and regenerative ORC for different heat source types and capacities," Energy, Elsevier, vol. 121(C), pages 570-598.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:22:p:4269-:d:285092. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.