IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v88y2015icp765-774.html
   My bibliography  Save this article

Performance analysis and binary working fluid selection of combined flash-binary geothermal cycle

Author

Listed:
  • Zeyghami, Mehdi

Abstract

Performance of the combined flash-binary geothermal power cycle for geofluid temperatures between 150 and 250 °C is studied. A thermodynamic model is developed, and the suitable binary working fluids for different geofluid temperatures are identified from a list of thirty working fluid candidates, consisting environmental friendly refrigerants and hydrocarbons. The overall system exergy destruction and Vapor Expansion Ratio across the binary cycle turbine are selected as key performance indicators. The results show that for low-temperature heat sources using refrigerants as binary working fluids result in higher overall cycle efficiency and for medium and high-temperature resources, hydrocarbons are more suitable. For combined flash-binary cycle, secondary working fluids; R-152a, Butane and Cis-butane show the best performances at geofluid temperatures 150, 200 and 250 °C respectively. The overall second law efficiency is calculated as high as 0.48, 0.55 and 0.58 for geofluid temperatures equal 150, 200 and 250 °C respectively. The flash separator pressure found to has important effects on cycle operation and performance. Separator pressure dictates the work production share of steam and binary parts of the system. And there is an optimal separator pressure at which overall exergy destruction of the cycle achieves its minimum value.

Suggested Citation

  • Zeyghami, Mehdi, 2015. "Performance analysis and binary working fluid selection of combined flash-binary geothermal cycle," Energy, Elsevier, vol. 88(C), pages 765-774.
  • Handle: RePEc:eee:energy:v:88:y:2015:i:c:p:765-774
    DOI: 10.1016/j.energy.2015.05.092
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544215006945
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2015.05.092?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Edrisi, Baktosh H. & Michaelides, Efstathios E., 2013. "Effect of the working fluid on the optimum work of binary-flashing geothermal power plants," Energy, Elsevier, vol. 50(C), pages 389-394.
    2. Abdulateef, J.M. & Sopian, K. & Alghoul, M.A. & Sulaiman, M.Y., 2009. "Review on solar-driven ejector refrigeration technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1338-1349, August.
    3. Zhai, Huixing & Shi, Lin & An, Qingsong, 2014. "Influence of working fluid properties on system performance and screen evaluation indicators for geothermal ORC (organic Rankine cycle) system," Energy, Elsevier, vol. 74(C), pages 2-11.
    4. Yari, Mortaza, 2010. "Exergetic analysis of various types of geothermal power plants," Renewable Energy, Elsevier, vol. 35(1), pages 112-121.
    5. Rayegan, R. & Tao, Y.X., 2011. "A procedure to select working fluids for Solar Organic Rankine Cycles (ORCs)," Renewable Energy, Elsevier, vol. 36(2), pages 659-670.
    6. Liu, Bo-Tau & Chien, Kuo-Hsiang & Wang, Chi-Chuan, 2004. "Effect of working fluids on organic Rankine cycle for waste heat recovery," Energy, Elsevier, vol. 29(8), pages 1207-1217.
    7. Chamorro, César R. & Mondéjar, María E. & Ramos, Roberto & Segovia, José J. & Martín, María C. & Villamañán, Miguel A., 2012. "World geothermal power production status: Energy, environmental and economic study of high enthalpy technologies," Energy, Elsevier, vol. 42(1), pages 10-18.
    8. Chen, Huijuan & Goswami, D. Yogi & Stefanakos, Elias K., 2010. "A review of thermodynamic cycles and working fluids for the conversion of low-grade heat," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 3059-3067, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alvin Kiprono Bett & Saeid Jalilinasrabady, 2021. "Optimization of ORC Power Plants for Geothermal Application in Kenya by Combining Exergy and Pinch Point Analysis," Energies, MDPI, vol. 14(20), pages 1-17, October.
    2. Wang, Dabiao & Ma, Yuezheng & Tian, Ran & Duan, Jie & Hu, Busong & Shi, Lin, 2018. "Thermodynamic evaluation of an ORC system with a Low Pressure Saturated Steam heat source," Energy, Elsevier, vol. 149(C), pages 375-385.
    3. Paweł Ziółkowski & Marta Drosińska-Komor & Jerzy Głuch & Łukasz Breńkacz, 2023. "Review of Methods for Diagnosing the Degradation Process in Power Units Cooperating with Renewable Energy Sources Using Artificial Intelligence," Energies, MDPI, vol. 16(17), pages 1-28, August.
    4. Meng, Nan & Gao, Xiang & Wang, Zeyu & Li, Tailu, 2024. "Numerical investigation and optimization on dynamic power generation performance of enhanced geothermal system," Energy, Elsevier, vol. 288(C).
    5. Meng, Nan & Li, Tailu & Wang, Jianqiang & Jia, Yanan & Liu, Qinghua & Qin, Haosen, 2020. "Synergetic mechanism of fracture properties and system configuration on techno-economic performance of enhanced geothermal system for power generation during life cycle," Renewable Energy, Elsevier, vol. 152(C), pages 910-924.
    6. Hou, Rui & Zhang, Nachuan & Gao, Wei & Chen, Kang & Liu, Lijun & Kumar, M. Saravana, 2023. "Design and optimization of a novel flash-binary-based hybrid system to produce power, cooling, freshwater, and liquid hydrogen," Energy, Elsevier, vol. 280(C).
    7. Zhao, Yajing & Wang, Jiangfeng, 2016. "Exergoeconomic analysis and optimization of a flash-binary geothermal power system," Applied Energy, Elsevier, vol. 179(C), pages 159-170.
    8. Pratama, Heru Berian & Koike, Katsuaki, 2024. "Thermodynamic model-based specification of optimal geothermal power generation system for high-temperature liquid-dominated systems using flash and flash-binary cycles," Renewable Energy, Elsevier, vol. 220(C).
    9. Andreas Diga Pratama Putera & Annisa Nurul Hidayah & Alison Subiantoro, 2019. "Thermo-Economic Analysis of A Geothermal Binary Power Plant in Indonesia—A Pre-Feasibility Case Study of the Wayang Windu Site," Energies, MDPI, vol. 12(22), pages 1-19, November.
    10. Yi, Zhitong & Luo, Xianglong & Chen, Jianyong & Chen, Ying, 2017. "Mathematical modelling and optimization of a liquid separation condenser-based organic Rankine cycle used in waste heat utilization," Energy, Elsevier, vol. 139(C), pages 916-934.
    11. Su, Wen & Zhao, Li & Deng, Shuai, 2017. "New knowledge on the temperature-entropy saturation boundary slope of working fluids," Energy, Elsevier, vol. 119(C), pages 211-217.
    12. Leveni, Martina & Manfrida, Giampaolo & Cozzolino, Raffaello & Mendecka, Barbara, 2019. "Energy and exergy analysis of cold and power production from the geothermal reservoir of Torre Alfina," Energy, Elsevier, vol. 180(C), pages 807-818.
    13. Wang, Dabiao & Dai, Xiaoye & Wu, Zhihua & Zhao, Wu & Wang, Puwei & Hu, Busong & Shi, Lin, 2020. "Design and testing of a 340 kW Organic Rankine Cycle system for Low Pressure Saturated Steam heat source," Energy, Elsevier, vol. 210(C).
    14. Calise, Francesco & Macaluso, Adriano & Piacentino, Antonio & Vanoli, Laura, 2017. "A novel hybrid polygeneration system supplying energy and desalinated water by renewable sources in Pantelleria Island," Energy, Elsevier, vol. 137(C), pages 1086-1106.
    15. Zhou, Yuhong & Li, Shanshan & Sun, Lei & Zhao, Shupeng & Ashraf Talesh, Seyed Saman, 2020. "Optimization and thermodynamic performance analysis of a power generation system based on geothermal flash and dual-pressure evaporation organic Rankine cycles using zeotropic mixtures," Energy, Elsevier, vol. 194(C).
    16. Kivanc Ates, H. & Serpen, U., 2016. "Power plant selection for medium to high enthalpy geothermal resources of Turkey," Energy, Elsevier, vol. 102(C), pages 287-301.
    17. Wang, Fu & Deng, Shuai & Zhao, Jun & Wang, Junyao & Sun, Taiwei & Yan, Jinyue, 2017. "Performance and economic assessments of integrating geothermal energy into coal-fired power plant with CO2 capture," Energy, Elsevier, vol. 119(C), pages 278-287.
    18. Mokarram, N. Hassani & Mosaffa, A.H., 2018. "A comparative study and optimization of enhanced integrated geothermal flash and Kalina cycles: A thermoeconomic assessment," Energy, Elsevier, vol. 162(C), pages 111-125.
    19. Zhou, Zongming & Cao, Yan & Anqi, Ali E. & Zoghi, Mohammad & Habibi, Hamed & Rajhi, Ali A. & Alamri, Sagr, 2022. "Converting a geothermal-driven steam flash cycle into a high-performance polygeneration system by waste heat recovery: 3E analysis and Genetic-Fgoalattain optimization," Renewable Energy, Elsevier, vol. 186(C), pages 609-627.
    20. Abdolalipouradl, Mehran & Mohammadkhani, Farzad & Khalilarya, Shahram, 2020. "A comparative analysis of novel combined flash-binary cycles for Sabalan geothermal wells: Thermodynamic and exergoeconomic viewpoints," Energy, Elsevier, vol. 209(C).
    21. Lee, Inkyu & Tester, Jefferson William & You, Fengqi, 2019. "Systems analysis, design, and optimization of geothermal energy systems for power production and polygeneration: State-of-the-art and future challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 551-577.
    22. Zhang, Mingming & Timoshin, Anton & Al-Ammar, Essam A. & Sillanpaa, Mika & Zhang, Guiju, 2023. "Power, cooling, freshwater, and hydrogen production system from a new integrated system working with the zeotropic mixture, using a flash-binary geothermal system," Energy, Elsevier, vol. 263(PD).
    23. Yu, Jie & Hu, Jianqiang & Yan, Pengyang & Ashraf Talesh, Seyed Saman, 2023. "Optimizing sustainable energy solutions: A comprehensive analysis of geothermal-powered compressed air energy storage system," Energy, Elsevier, vol. 285(C).
    24. Lu, Xinli & Zhao, Yangyang & Zhu, Jialing & Zhang, Wei, 2018. "Optimization and applicability of compound power cycles for enhanced geothermal systems," Applied Energy, Elsevier, vol. 229(C), pages 128-141.
    25. Niknam, Pouriya H. & Talluri, Lorenzo & Fiaschi, Daniele & Manfrida, Giampaolo, 2021. "Sensitivity analysis and dynamic modelling of the reinjection process in a binary cycle geothermal power plant of Larderello area," Energy, Elsevier, vol. 214(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lee, Ung & Jeon, Jeongwoo & Han, Chonghun & Lim, Youngsub, 2017. "Superstructure based techno-economic optimization of the organic rankine cycle using LNG cryogenic energy," Energy, Elsevier, vol. 137(C), pages 83-94.
    2. Lecompte, Steven & Huisseune, Henk & van den Broek, Martijn & Vanslambrouck, Bruno & De Paepe, Michel, 2015. "Review of organic Rankine cycle (ORC) architectures for waste heat recovery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 448-461.
    3. Xu, Weicong & Zhao, Li & Mao, Samuel S. & Deng, Shuai, 2020. "Towards novel low temperature thermodynamic cycle: A critical review originated from organic Rankine cycle," Applied Energy, Elsevier, vol. 270(C).
    4. Vélez, Fredy & Segovia, José J. & Martín, M. Carmen & Antolín, Gregorio & Chejne, Farid & Quijano, Ana, 2012. "A technical, economical and market review of organic Rankine cycles for the conversion of low-grade heat for power generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 4175-4189.
    5. Li, Tailu & Fu, Wencheng & Zhu, Jialing, 2014. "An integrated optimization for organic Rankine cycle based on entransy theory and thermodynamics," Energy, Elsevier, vol. 72(C), pages 561-573.
    6. Li, Jing & Alvi, Jahan Zeb & Pei, Gang & Su, Yuehong & Li, Pengcheng & Gao, Guangtao & Ji, Jie, 2016. "Modelling of organic Rankine cycle efficiency with respect to the equivalent hot side temperature," Energy, Elsevier, vol. 115(P1), pages 668-683.
    7. Zhang, Xinxin & Li, Yang, 2023. "An examination of super dry working fluids used in regenerative organic Rankine cycles," Energy, Elsevier, vol. 263(PD).
    8. Mohan, Sooraj & Dinesha, P. & Campana, Pietro Elia, 2022. "ANN-PSO aided selection of hydrocarbons as working fluid for low-temperature organic Rankine cycle and thermodynamic evaluation of optimal working fluid," Energy, Elsevier, vol. 259(C).
    9. Zinsalo, Joël M. & Lamarche, Louis & Raymond, Jasmin, 2022. "Performance analysis and working fluid selection of an Organic Rankine Cycle Power Plant coupled to an Enhanced Geothermal System," Energy, Elsevier, vol. 245(C).
    10. Kazemi, Shabnam & Nor, Mohamad Iskandr Mohamad & Teoh, Wen Hui, 2020. "Thermodynamic and economic investigation of an ionic liquid as a new proposed geothermal fluid in different organic Rankine cycles for energy production," Energy, Elsevier, vol. 193(C).
    11. Xinxin Zhang & Yin Zhang & Min Cao & Jingfu Wang & Yuting Wu & Chongfang Ma, 2019. "Working Fluid Selection for Organic Rankine Cycle Using Single-Screw Expander," Energies, MDPI, vol. 12(16), pages 1-23, August.
    12. White, J.A. & Velasco, S., 2018. "Characterizing wet and dry fluids in temperature-entropy diagrams," Energy, Elsevier, vol. 154(C), pages 269-276.
    13. Bao, Junjiang & Zhao, Li, 2013. "A review of working fluid and expander selections for organic Rankine cycle," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 325-342.
    14. Vivian, Jacopo & Manente, Giovanni & Lazzaretto, Andrea, 2015. "A general framework to select working fluid and configuration of ORCs for low-to-medium temperature heat sources," Applied Energy, Elsevier, vol. 156(C), pages 727-746.
    15. Sarkar, Jahar & Bhattacharyya, Souvik, 2015. "Potential of organic Rankine cycle technology in India: Working fluid selection and feasibility study," Energy, Elsevier, vol. 90(P2), pages 1618-1625.
    16. Mokhtari, Hamid & Hadiannasab, Hasti & Mostafavi, Mostafa & Ahmadibeni, Ali & Shahriari, Behrooz, 2016. "Determination of optimum geothermal Rankine cycle parameters utilizing coaxial heat exchanger," Energy, Elsevier, vol. 102(C), pages 260-275.
    17. Zhang, Xinxin & Li, Yingzhen, 2024. "Recommended operating conditions and performance evaluation of commonly used hydrofluoroolefin (HFO) and hydrochlorofluoroolefin (HCFO) refrigerants in organic Rankine cycle," Energy, Elsevier, vol. 299(C).
    18. Yu, Haoshui & Feng, Xiao & Wang, Yufei, 2015. "A new pinch based method for simultaneous selection of working fluid and operating conditions in an ORC (Organic Rankine Cycle) recovering waste heat," Energy, Elsevier, vol. 90(P1), pages 36-46.
    19. Kim, Kyeongsu & Lee, Ung & Kim, Changsoo & Han, Chonghun, 2015. "Design and optimization of cascade organic Rankine cycle for recovering cryogenic energy from liquefied natural gas using binary working fluid," Energy, Elsevier, vol. 88(C), pages 304-313.
    20. Wang, Mingtao & Zhang, Juan & Liu, Qiyi & Tan, Luzhi, 2020. "Effects of critical temperature, critical pressure and dryness of working fluids on the performance of the transcritical organic rankine cycle," Energy, Elsevier, vol. 202(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:88:y:2015:i:c:p:765-774. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.