IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i22p4231-d284148.html
   My bibliography  Save this article

Informed Citizen Panels on the Swiss Electricity Mix 2035: Longer-Term Evolution of Citizen Preferences and Affect in Two Cities

Author

Listed:
  • Alexane Dubois

    (Renewable Energy Systems, Institute for Environmental Sciences, Section of Earth and Environmental Sciences, University of Geneva, Blvd. Carl Vogt 66, 1211 Geneva, Switzerland
    These two authors contributed equally to this article.)

  • Simona Holzer

    (Renewable Energy Systems, Institute for Environmental Sciences, Section of Earth and Environmental Sciences, University of Geneva, Blvd. Carl Vogt 66, 1211 Geneva, Switzerland
    These two authors contributed equally to this article.)

  • Georgios Xexakis

    (Renewable Energy Systems, Institute for Environmental Sciences, Section of Earth and Environmental Sciences, University of Geneva, Blvd. Carl Vogt 66, 1211 Geneva, Switzerland)

  • Julia Cousse

    (Renewable Energy Systems, Institute for Environmental Sciences, Section of Earth and Environmental Sciences, University of Geneva, Blvd. Carl Vogt 66, 1211 Geneva, Switzerland
    Institute for Economy and the Environment, University of St. Gallen, Rosenbergstr. 51, 9000 St. Gallen, Switzerland)

  • Evelina Trutnevyte

    (Renewable Energy Systems, Institute for Environmental Sciences, Section of Earth and Environmental Sciences, University of Geneva, Blvd. Carl Vogt 66, 1211 Geneva, Switzerland)

Abstract

For a successful transition to low-carbon electricity supply, public support is essential. Citizen preferences are best understood in the process of informed citizen panels, where citizens are informed about the pros and cons of various electricity technologies and spend time reflecting on the trade-offs. We investigated how information about electricity technologies and their sustainability impacts can change citizens’ preferences and affect for the complete Swiss electricity mix 2035. The citizens received information as factsheets and, during workshops, discussed in groups and built their preferred electricity mix using an interactive tool. The informed citizen panel (N = 33) in the Swiss city of Geneva showed high support for domestic renewable technologies and end-use efficiency, as well as low support for net electricity import, natural gas, and nuclear power. Preferences and affect for unfamiliar technologies changed after receiving information and remained stable even in the longer term four weeks after. Preferences and affect for already familiar technologies, like hydropower, barely changed. The same procedure in the two Swiss cities of Geneva and Zurich (N = 46) enabled the identification of robust support for renewable technologies and efficiency with only minor context-specific differences.

Suggested Citation

  • Alexane Dubois & Simona Holzer & Georgios Xexakis & Julia Cousse & Evelina Trutnevyte, 2019. "Informed Citizen Panels on the Swiss Electricity Mix 2035: Longer-Term Evolution of Citizen Preferences and Affect in Two Cities," Energies, MDPI, vol. 12(22), pages 1-21, November.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:22:p:4231-:d:284148
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/22/4231/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/22/4231/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bessette, Douglas L. & Arvai, Joseph L., 2018. "Engaging attribute tradeoffs in clean energy portfolio development," Energy Policy, Elsevier, vol. 115(C), pages 221-229.
    2. Madlener, Reinhard & Kowalski, Katharina & Stagl, Sigrid, 2007. "New ways for the integrated appraisal of national energy scenarios: The case of renewable energy use in Austria," Energy Policy, Elsevier, vol. 35(12), pages 6060-6074, December.
    3. Bertsch, Valentin & Hall, Margeret & Weinhardt, Christof & Fichtner, Wolf, 2016. "Public acceptance and preferences related to renewable energy and grid expansion policy: Empirical insights for Germany," Energy, Elsevier, vol. 114(C), pages 465-477.
    4. Zhai, Pei & Williams, Eric D., 2012. "Analyzing consumer acceptance of photovoltaics (PV) using fuzzy logic model," Renewable Energy, Elsevier, vol. 41(C), pages 350-357.
    5. van Rijnsoever, Frank J. & van Mossel, Allard & Broecks, Kevin P.F., 2015. "Public acceptance of energy technologies: The effects of labeling, time, and heterogeneity in a discrete choice experiment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 817-829.
    6. Hilary S. Boudet, 2019. "Public perceptions of and responses to new energy technologies," Nature Energy, Nature, vol. 4(6), pages 446-455, June.
    7. Gabrielle Wong-Parodi & Baruch Fischhoff & Ben Strauss, 2014. "A method to evaluate the usability of interactive climate change impact decision aids," Climatic Change, Springer, vol. 126(3), pages 485-493, October.
    8. Lauren A. Fleishman & Wändi Bruine De Bruin & M. Granger Morgan, 2010. "Informed Public Preferences for Electricity Portfolios with CCS and Other Low‐Carbon Technologies," Risk Analysis, John Wiley & Sons, vol. 30(9), pages 1399-1410, September.
    9. Dana R. Fisher, 2019. "The broader importance of #FridaysForFuture," Nature Climate Change, Nature, vol. 9(6), pages 430-431, June.
    10. Mohr, Lukas & Burg, Vanessa & Thees, Oliver & Trutnevyte, Evelina, 2019. "Spatial hot spots and clusters of bioenergy combined with socio-economic analysis in Switzerland," Renewable Energy, Elsevier, vol. 140(C), pages 840-851.
    11. Sandra Volken & Gabrielle Wong-Parodi & Evelina Trutnevyte, 2019. "Public awareness and perception of environmental, health and safety risks to electricity generation: an explorative interview study in Switzerland," Journal of Risk Research, Taylor & Francis Journals, vol. 22(4), pages 432-447, April.
    12. Douglas L. Bessette & Victoria Campbell‐Arvai & Joseph Arvai, 2016. "Expanding the Reach of Participatory Risk Management: Testing an Online Decision‐Aiding Framework for Informing Internally Consistent Choices," Risk Analysis, John Wiley & Sons, vol. 36(5), pages 992-1005, May.
    13. Greenberg, Michael, 2009. "Energy sources, public policy, and public preferences: Analysis of US national and site-specific data," Energy Policy, Elsevier, vol. 37(8), pages 3242-3249, August.
    14. Stadelmann-Steffen, Isabelle, 2019. "Bad news is bad news: Information effects and citizens’ socio-political acceptance of new technologies of electricity transmission," Land Use Policy, Elsevier, vol. 81(C), pages 531-545.
    15. Roh Pin Lee, 2015. "Stability of energy imageries and affect following shocks to the global energy system: the case of Fukushima," Journal of Risk Research, Taylor & Francis Journals, vol. 18(7), pages 965-988, August.
    16. Corner, Adam & Venables, Dan & Spence, Alexa & Poortinga, Wouter & Demski, Christina & Pidgeon, Nick, 2011. "Nuclear power, climate change and energy security: Exploring British public attitudes," Energy Policy, Elsevier, vol. 39(9), pages 4823-4833, September.
    17. Trutnevyte, Evelina & Stauffacher, Michael & Scholz, Roland W., 2011. "Supporting energy initiatives in small communities by linking visions with energy scenarios and multi-criteria assessment," Energy Policy, Elsevier, vol. 39(12), pages 7884-7895.
    18. Truelove, Heather Barnes, 2012. "Energy source perceptions and policy support: Image associations, emotional evaluations, and cognitive beliefs," Energy Policy, Elsevier, vol. 45(C), pages 478-489.
    19. van Rijnsoever, Frank J. & Farla, Jacco C.M., 2014. "Identifying and explaining public preferences for the attributes of energy technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 71-82.
    20. Zoellner, Jan & Schweizer-Ries, Petra & Wemheuer, Christin, 2008. "Public acceptance of renewable energies: Results from case studies in Germany," Energy Policy, Elsevier, vol. 36(11), pages 4136-4141, November.
    21. Jobin, Marilou & Siegrist, Michael, 2018. "We choose what we like – Affect as a driver of electricity portfolio choice," Energy Policy, Elsevier, vol. 122(C), pages 736-747.
    22. Visschers, Vivianne H.M. & Keller, Carmen & Siegrist, Michael, 2011. "Climate change benefits and energy supply benefits as determinants of acceptance of nuclear power stations: Investigating an explanatory model," Energy Policy, Elsevier, vol. 39(6), pages 3621-3629, June.
    23. Scheer, Dirk & Konrad, Wilfried & Wassermann, Sandra, 2017. "The good, the bad, and the ambivalent: A qualitative study of public perceptions towards energy technologies and portfolios in Germany," Energy Policy, Elsevier, vol. 100(C), pages 89-100.
    24. Gabrielle Wong-Parodi & Tamar Krishnamurti & Alex Davis & Daniel Schwartz & Baruch Fischhoff, 2016. "A decision science approach for integrating social science in climate and energy solutions," Nature Climate Change, Nature, vol. 6(6), pages 563-569, June.
    25. Sasse, Jan-Philipp & Trutnevyte, Evelina, 2019. "Distributional trade-offs between regionally equitable and cost-efficient allocation of renewable electricity generation," Applied Energy, Elsevier, vol. 254(C).
    26. Christina Demski & Alexa Spence & Nick Pidgeon, 2017. "Effects of exemplar scenarios on public preferences for energy futures using the my2050 scenario-building tool," Nature Energy, Nature, vol. 2(4), pages 1-7, April.
    27. Musall, Fabian David & Kuik, Onno, 2011. "Local acceptance of renewable energy--A case study from southeast Germany," Energy Policy, Elsevier, vol. 39(6), pages 3252-3260, June.
    28. Berntsen, Philip B. & Trutnevyte, Evelina, 2017. "Ensuring diversity of national energy scenarios: Bottom-up energy system model with Modeling to Generate Alternatives," Energy, Elsevier, vol. 126(C), pages 886-898.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Spampatti, Tobia & Hahnel, Ulf J.J. & Trutnevyte, Evelina & Brosch, Tobias, 2022. "Short and long-term dominance of negative information in shaping public energy perceptions: The case of shallow geothermal systems," Energy Policy, Elsevier, vol. 167(C).
    2. Cousse, Julia & Trutnevyte, Evelina & Hahnel, Ulf J.J., 2021. "Tell me how you feel about geothermal energy: Affect as a revealing factor of the role of seismic risk on public acceptance," Energy Policy, Elsevier, vol. 158(C).
    3. Franziska Steinberger & Tobias Minder & Evelina Trutnevyte, 2020. "Efficiency versus Equity in Spatial Siting of Electricity Generation: Citizen Preferences in a Serious Board Game in Switzerland," Energies, MDPI, vol. 13(18), pages 1-17, September.
    4. Xexakis, Georgios & Hansmann, Ralph & Volken, Sandra P. & Trutnevyte, Evelina, 2020. "Models on the wrong track: Model-based electricity supply scenarios in Switzerland are not aligned with the perspectives of energy experts and the public," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xexakis, Georgios & Hansmann, Ralph & Volken, Sandra P. & Trutnevyte, Evelina, 2020. "Models on the wrong track: Model-based electricity supply scenarios in Switzerland are not aligned with the perspectives of energy experts and the public," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    2. Jobin, Marilou & Siegrist, Michael, 2018. "We choose what we like – Affect as a driver of electricity portfolio choice," Energy Policy, Elsevier, vol. 122(C), pages 736-747.
    3. Sharpton, Tara & Lawrence, Thomas & Hall, Margeret, 2020. "Drivers and barriers to public acceptance of future energy sources and grid expansion in the United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 126(C).
    4. Escribano, Gonzalo & González-Enríquez, Carmen & Lázaro-Touza, Lara & Paredes-Gázquez, Juandiego, 2023. "An energy union without interconnections? Public acceptance of cross-border interconnectors in four European countries," Energy, Elsevier, vol. 266(C).
    5. Abdulla, A. & Vaishnav, P. & Sergi, B. & Victor, D.G., 2019. "Limits to deployment of nuclear power for decarbonization: Insights from public opinion," Energy Policy, Elsevier, vol. 129(C), pages 1339-1346.
    6. Franziska Steinberger & Tobias Minder & Evelina Trutnevyte, 2020. "Efficiency versus Equity in Spatial Siting of Electricity Generation: Citizen Preferences in a Serious Board Game in Switzerland," Energies, MDPI, vol. 13(18), pages 1-17, September.
    7. Hübner, Gundula & Leschinger, Valentin & Müller, Florian J.Y. & Pohl, Johannes, 2023. "Broadening the social acceptance of wind energy – An Integrated Acceptance Model," Energy Policy, Elsevier, vol. 173(C).
    8. Spampatti, Tobia & Hahnel, Ulf J.J. & Trutnevyte, Evelina & Brosch, Tobias, 2022. "Short and long-term dominance of negative information in shaping public energy perceptions: The case of shallow geothermal systems," Energy Policy, Elsevier, vol. 167(C).
    9. Yu, H. & Reiner, D. & Chen, H. & Mi, Z., 2018. "A comparison of public preferences for different low-carbon energy technologies: Support for CCS, nuclear and wind energy in the United Kingdom," Cambridge Working Papers in Economics 1826, Faculty of Economics, University of Cambridge.
    10. Scovell, Mitchell & McCrea, Rod & Walton, Andrea & Poruschi, Lavinia, 2024. "Local acceptance of solar farms: The impact of energy narratives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    11. Amanda D Boyd & Jiawei Liu & Jay D Hmielowski, 2019. "Public support for energy portfolios in Canada: How information about cost and national energy portfolios affect perceptions of energy systems," Energy & Environment, , vol. 30(2), pages 322-340, March.
    12. Scheer, Dirk & Konrad, Wilfried & Wassermann, Sandra, 2017. "The good, the bad, and the ambivalent: A qualitative study of public perceptions towards energy technologies and portfolios in Germany," Energy Policy, Elsevier, vol. 100(C), pages 89-100.
    13. Koecklin, Manuel Tong & Longoria, Genaro & Fitiwi, Desta Z. & DeCarolis, Joseph F. & Curtis, John, 2021. "Public acceptance of renewable electricity generation and transmission network developments: Insights from Ireland," Energy Policy, Elsevier, vol. 151(C).
    14. Tong Koecklin, Manuel & Fitiwi, Desta & de Carolis, Joseph F. & Curtis, John, 2020. "Renewable electricity generation and transmission network developments in light of public opposition: Insights from Ireland," Papers WP653, Economic and Social Research Institute (ESRI).
    15. Wang, Yu & Gu, Jibao & Wu, Jianlin, 2020. "Explaining local residents’ acceptance of rebuilding nuclear power plants: The roles of perceived general benefit and perceived local benefit," Energy Policy, Elsevier, vol. 140(C).
    16. Lee, You-Kyung, 2020. "Sustainability of nuclear energy in Korea: From the users’ perspective," Energy Policy, Elsevier, vol. 147(C).
    17. Cousse, Julia, 2021. "Still in love with solar energy? Installation size, affect, and the social acceptance of renewable energy technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    18. Inna Čábelková & Wadim Strielkowski & Irina Firsova & Marina Korovushkina, 2020. "Public Acceptance of Renewable Energy Sources: a Case Study from the Czech Republic," Energies, MDPI, vol. 13(7), pages 1-15, April.
    19. Wang, Fan & Gu, Jibao & Wu, Jianlin, 2020. "Perspective taking, energy policy involvement, and public acceptance of nuclear energy: Evidence from China," Energy Policy, Elsevier, vol. 145(C).
    20. Yukiko Omata & Hajime Katayama & Toshi. H. Arimura, 2017. "Same concerns, same responses? A Bayesian quantile regression analysis of the determinants for supporting nuclear power generation in Japan," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 19(3), pages 581-608, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:22:p:4231-:d:284148. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.