IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i21p4186-d282937.html
   My bibliography  Save this article

The Industrial Applicability of PEA Space Charge Measurements, for Performance Optimization of HVDC Power Cables

Author

Listed:
  • Antonino Imburgia

    (LEPRE Laboratory, Dipartimento di Ingegneria, Università di Palermo, 90128 Palermo, Italy)

  • Pietro Romano

    (LEPRE Laboratory, Dipartimento di Ingegneria, Università di Palermo, 90128 Palermo, Italy)

  • George Chen

    (The Tony Davies High Voltage Laboratory, University of Southampton, Southampton SO17 IBJ, UK)

  • Giuseppe Rizzo

    (LEPRE Laboratory, Dipartimento di Ingegneria, Università di Palermo, 90128 Palermo, Italy)

  • Eleonora Riva Sanseverino

    (LEPRE Laboratory, Dipartimento di Ingegneria, Università di Palermo, 90128 Palermo, Italy)

  • Fabio Viola

    (LEPRE Laboratory, Dipartimento di Ingegneria, Università di Palermo, 90128 Palermo, Italy)

  • Guido Ala

    (LEPRE Laboratory, Dipartimento di Ingegneria, Università di Palermo, 90128 Palermo, Italy)

Abstract

Cable manufacturing industries are constantly trying to improve the electrical performance of power cables. During the years, it was found that one of the most relevant degradation factors influencing the cable lifetime is the presence of space charge in the insulation layer. To detect the accumulated charge, the pulsed electro-acoustic (PEA) method is the most used technique. Despite the wide use of the PEA cell, several issues are still present. In particular, the PEA output signal is strongly disturbed by the acoustic waves reflections within the PEA cell. This causes the distortion of the output signal and therefore the misinterpretation of the charge profiles. This, in turn, may result in an incorrect cable characterization from the space charge phenomenon point of view. In 2017, due to the proved degradation effect of the space charge accumulation phenomenon, the IEEE Std 1732 was developed. This standard describes the steps to be followed for the space charge measurement in cables specimens during pre-qualification or type tests. Therefore, cable manufacturing industries started to take a particular interest in these measures. In the light of this, the aim of the present work is to highlight that the enacted standard is not easily applicable since various problems are still present in the PEA method for cables. In particular, in this work, the effect of multiple reflected signals due to the different interfaces involved, but also the effect of the signal attenuation due to cable dielectric thickness, as well as the effect of the PEA cell ground electrode thickness in the output charge profile, are reported. These issues have been demonstrated by means of an experimental test carried out on a full-size cable in the Prysmian Group High Voltage laboratory. To better understand the PEA cell output signal formation, a PEA cell model was developed in a previous work and it has been experimentally validated here. In particular, simulations have been useful to highlight the effect of the reflection phenomena due to the PEA cell ground electrode thickness on the basis of the specimen under test features. Moreover, by analyzing the simulation results, it was possible to separate the main signal from the reflected waves and, in turn, to calculate the suitable ground electrode thickness for the cable specimen under test.

Suggested Citation

  • Antonino Imburgia & Pietro Romano & George Chen & Giuseppe Rizzo & Eleonora Riva Sanseverino & Fabio Viola & Guido Ala, 2019. "The Industrial Applicability of PEA Space Charge Measurements, for Performance Optimization of HVDC Power Cables," Energies, MDPI, vol. 12(21), pages 1-13, November.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:21:p:4186-:d:282937
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/21/4186/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/21/4186/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sameh Ziad Ahmed Dabbak & Hazlee Azil Illias & Bee Chin Ang & Nurul Ain Abdul Latiff & Mohamad Zul Hilmey Makmud, 2018. "Electrical Properties of Polyethylene/Polypropylene Compounds for High-Voltage Insulation," Energies, MDPI, vol. 11(6), pages 1-13, June.
    2. Chao Tang & Bo Huang & Miao Hao & Zhiqiang Xu & Jian Hao & George Chen, 2016. "Progress of Space Charge Research on Oil-Paper Insulation Using Pulsed Electroacoustic Techniques," Energies, MDPI, vol. 9(1), pages 1-35, January.
    3. Giuseppe Rizzo & Pietro Romano & Antonino Imburgia & Guido Ala, 2019. "Review of the PEA Method for Space Charge Measurements on HVDC Cables and Mini-Cables," Energies, MDPI, vol. 12(18), pages 1-23, September.
    4. Mehrtash Azizian Fard & Mohamed Emad Farrag & Scott McMeekin & Alistair Reid, 2018. "Electrical Treeing in Cable Insulation under Different HVDC Operational Conditions," Energies, MDPI, vol. 11(9), pages 1-14, September.
    5. Roberto Benato & İbrahim Balanuye & Fatih Köksal & Nurhan Ozan & Ercüment Özdemirci, 2018. "Installation of XLPE-Insulated 400 kV Submarine AC Power Cables under the Dardanelles Strait: A 4 GW Turkish Grid Reinforcement," Energies, MDPI, vol. 11(1), pages 1-15, January.
    6. Lan Xiong & Yonghui Chen & Yang Jiao & Jie Wang & Xiao Hu, 2019. "Study on the Effect of Cable Group Laying Mode on Temperature Field Distribution and Cable Ampacity," Energies, MDPI, vol. 12(17), pages 1-15, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marek Florkowski & Maciej Kuniewski, 2023. "Analysis of Space Charge Signal Spatial Resolution Determined with PEA Method in Flat Samples including Attenuation Effects," Energies, MDPI, vol. 16(8), pages 1-16, April.
    2. Giuseppe Rizzo & Pietro Romano & Antonino Imburgia & Fabio Viola & Guido Ala, 2020. "The Effect of the Axial Heat Transfer on Space Charge Accumulation Phenomena in HVDC Cables," Energies, MDPI, vol. 13(18), pages 1-18, September.
    3. Antonino Imburgia & Pietro Romano & Giuseppe Rizzo & Fabio Viola & Guido Ala & George Chen, 2020. "Reliability of PEA Measurement in Presence of an Air Void Defect," Energies, MDPI, vol. 13(21), pages 1-14, October.
    4. Stanislaw Czapp & Seweryn Szultka & Adam Tomaszewski, 2020. "Design of Power Cable Lines Partially Exposed to Direct Solar Radiation—Special Aspects," Energies, MDPI, vol. 13(10), pages 1-16, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stanislaw Czapp & Seweryn Szultka & Adam Tomaszewski, 2020. "Design of Power Cable Lines Partially Exposed to Direct Solar Radiation—Special Aspects," Energies, MDPI, vol. 13(10), pages 1-16, May.
    2. Lixiao Mu & Xiaobing Xu & Zhanran Xia & Bin Yang & Haoran Guo & Wenjun Zhou & Chengke Zhou, 2021. "Autonomous Analysis of Infrared Images for Condition Diagnosis of HV Cable Accessories," Energies, MDPI, vol. 14(14), pages 1-15, July.
    3. Issouf Fofana & Yazid Hadjadj, 2018. "Power Transformer Diagnostics, Monitoring and Design Features," Energies, MDPI, vol. 11(12), pages 1-5, November.
    4. Mehrtash Azizian Fard & Mohamed Emad Farrag & Alistair Reid & Faris Al-Naemi, 2019. "Electrical Treeing in Power Cable Insulation under Harmonics Superimposed on Unfiltered HVDC Voltages," Energies, MDPI, vol. 12(16), pages 1-15, August.
    5. Hutchison, Zoë L. & Gill, Andrew B. & Sigray, Peter & He, Haibo & King, John W., 2021. "A modelling evaluation of electromagnetic fields emitted by buried subsea power cables and encountered by marine animals: Considerations for marine renewable energy development," Renewable Energy, Elsevier, vol. 177(C), pages 72-81.
    6. Giuseppe Rizzo & Pietro Romano & Antonino Imburgia & Fabio Viola & Guido Ala, 2020. "The Effect of the Axial Heat Transfer on Space Charge Accumulation Phenomena in HVDC Cables," Energies, MDPI, vol. 13(18), pages 1-18, September.
    7. Artur Cywiński & Krzysztof Chwastek & Dariusz Kusiak & Paweł Jabłoński, 2020. "Optimization of Spatial Configuration of Multistrand Cable Lines," Energies, MDPI, vol. 13(22), pages 1-22, November.
    8. Siti Sarah Junian & Mohamad Zul Hilmey Makmud & Zuhair Jamain & Khairatun Najwa Mohd Amin & Jedol Dayou & Hazlee Azil Illias, 2021. "Effect of Rice Husk Filler on the Structural and Dielectric Properties of Palm Oil as an Electrical Insulation Material," Energies, MDPI, vol. 14(16), pages 1-11, August.
    9. Giuseppe Rizzo & Pietro Romano & Antonino Imburgia & Guido Ala, 2019. "Review of the PEA Method for Space Charge Measurements on HVDC Cables and Mini-Cables," Energies, MDPI, vol. 12(18), pages 1-23, September.
    10. Yunpeng Zhan & George Chen & Miao Hao & Lu Pu & Xuefeng Zhao & Sen Wang & Jian Liu, 2020. "Space Charge Measurement and Modelling in Cross-Linked Polyethylene," Energies, MDPI, vol. 13(8), pages 1-14, April.
    11. Xiaoming Zhang & Hui Yin, 2019. "A Monocular Vision-Based Framework for Power Cable Cross-Section Measurement," Energies, MDPI, vol. 12(15), pages 1-26, August.
    12. Paweł Mikrut & Paweł Zydroń, 2023. "Numerical Modeling of PD Pulses Formation in a Gaseous Void Located in XLPE Insulation of a Loaded HVDC Cable," Energies, MDPI, vol. 16(17), pages 1-21, September.
    13. Marek Florkowski & Maciej Kuniewski, 2023. "Analysis of Space Charge Signal Spatial Resolution Determined with PEA Method in Flat Samples including Attenuation Effects," Energies, MDPI, vol. 16(8), pages 1-16, April.
    14. Artur Cywiński & Krzysztof Chwastek, 2021. "A Multiphysics Analysis of Coupled Electromagnetic-Thermal Phenomena in Cable Lines," Energies, MDPI, vol. 14(7), pages 1-20, April.
    15. Jian Hao & Runhao Zou & Ruijin Liao & Lijun Yang & Qiang Liao, 2018. "New Method for Shallow and Deep Trap Distribution Analysis in Oil Impregnated Insulation Paper Based on the Space Charge Detrapping," Energies, MDPI, vol. 11(2), pages 1-16, January.
    16. Yuting Zhang & Fuhao Yu & Zhe Ma & Jian Li & Jiang Qian & Xiaojiao Liang & Jianzhong Zhang & Mingjiang Zhang, 2022. "Conductor Temperature Monitoring of High-Voltage Cables Based on Electromagnetic-Thermal Coupling Temperature Analysis," Energies, MDPI, vol. 15(2), pages 1-14, January.
    17. Jiang Wu & Bo Zhang & Yibo Zhi & Minheng He & Penghui Shang & Yufeng Qian, 2022. "Validation through Experiment and Simulation of Internal Charging–Discharging Characteristics of Polyimide under High-Energy Electron Radiation," Energies, MDPI, vol. 15(18), pages 1-18, September.
    18. Runhao Zou & Jian Hao & Ruijin Liao, 2019. "Space/Interface Charge Analysis of the Multi-Layer Oil Gap and Oil Impregnated Pressboard Under the Electrical-Thermal Combined Stress," Energies, MDPI, vol. 12(6), pages 1-18, March.
    19. Antonino Imburgia & Pietro Romano & Giuseppe Rizzo & Fabio Viola & Guido Ala & George Chen, 2020. "Reliability of PEA Measurement in Presence of an Air Void Defect," Energies, MDPI, vol. 13(21), pages 1-14, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:21:p:4186-:d:282937. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.