IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i21p4114-d281087.html
   My bibliography  Save this article

Comprehensive Second-Order Adjoint Sensitivity Analysis Methodology (2nd-ASAM) Applied to a Subcritical Experimental Reactor Physics Benchmark: II. Effects of Imprecisely Known Microscopic Scattering Cross Sections

Author

Listed:
  • Ruixian Fang

    (Center for Nuclear Science and Energy, Department of Mechanical Engineering, University of South Carolina, Columbia, SC 29208, USA)

  • Dan Gabriel Cacuci

    (Center for Nuclear Science and Energy, Department of Mechanical Engineering, University of South Carolina, Columbia, SC 29208, USA)

Abstract

This work continues the presentation commenced in Part I of the second-order sensitivity analysis of nuclear data of a polyethylene-reflected plutonium (PERP) benchmark using the Second-Order Adjoint Sensitivity Analysis Methodology (2nd-ASAM). This work reports the results of the computations of the first- and second-order sensitivities of this benchmark’s computed leakage response with respect to the benchmark’s 21,600 parameters underlying the computed group-averaged isotopic scattering cross sections. The numerical results obtained for the 21,600 first-order relative sensitivities indicate that the majority of these were small, the largest having relative values of O (10 −2 ). Furthermore, the vast majority of the (21600) 2 second-order sensitivities with respect to the scattering cross sections were much smaller than the corresponding first-order ones. Consequently, this work shows that the effects of variances in the scattering cross sections on the expected value, variance, and skewness of the response distribution were negligible in comparison to the corresponding effects stemming from uncertainties in the total cross sections, which were presented in Part I. On the other hand, it was found that 52 of the 21600 × 180 mixed second-order sensitivities of the leakage response with respect to the scattering and total microscopic cross sections had values that were significantly larger than the unmixed second-order sensitivities of the leakage response with respect to the group-averaged scattering microscopic cross sections. The first- and second-order mixed sensitivities of the PERP benchmark’s leakage response with respect to the scattering cross sections and the other benchmark parameters (fission cross sections, average number of neutrons per fission, fission spectrum, isotopic atomic number densities, and source parameters) have also been computed and will be reported in subsequent works.

Suggested Citation

  • Ruixian Fang & Dan Gabriel Cacuci, 2019. "Comprehensive Second-Order Adjoint Sensitivity Analysis Methodology (2nd-ASAM) Applied to a Subcritical Experimental Reactor Physics Benchmark: II. Effects of Imprecisely Known Microscopic Scattering ," Energies, MDPI, vol. 12(21), pages 1-33, October.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:21:p:4114-:d:281087
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/21/4114/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/21/4114/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. D. G. Cacuci & R. Fang & J. A. Favorite & M. C. Badea & F. Di Rocco, 2019. "Comprehensive Second-Order Adjoint Sensitivity Analysis Methodology (2nd-ASAM) Applied to a Subcritical Experimental Reactor Physics Benchmark: III. Effects of Imprecisely Known Microscopic Fission Cr," Energies, MDPI, vol. 12(21), pages 1-67, October.
    2. Dan G. Cacuci & Ruixian Fang & Jeffrey A. Favorite, 2019. "Comprehensive Second-Order Adjoint Sensitivity Analysis Methodology (2nd-ASAM) Applied to a Subcritical Experimental Reactor Physics Benchmark: I. Effects of Imprecisely Known Microscopic Total and Ca," Energies, MDPI, vol. 12(21), pages 1-43, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dan Gabriel Cacuci, 2021. "On the Need to Determine Accurately the Impact of Higher-Order Sensitivities on Model Sensitivity Analysis, Uncertainty Quantification and Best-Estimate Predictions," Energies, MDPI, vol. 14(19), pages 1-38, October.
    2. Dan Gabriel Cacuci, 2021. "Fourth-Order Comprehensive Adjoint Sensitivity Analysis (4th-CASAM) of Response-Coupled Linear Forward/Adjoint Systems: I. Theoretical Framework," Energies, MDPI, vol. 14(11), pages 1-45, June.
    3. Dan Gabriel Cacuci, 2021. "High-Order Deterministic Sensitivity Analysis and Uncertainty Quantification: Review and New Developments," Energies, MDPI, vol. 14(20), pages 1-53, October.
    4. Dan Gabriel Cacuci, 2021. "The n th -Order Comprehensive Adjoint Sensitivity Analysis Methodology for Response-Coupled Forward/Adjoint Linear Systems (n th -CASAM-L): I. Mathematical Framework," Energies, MDPI, vol. 14(24), pages 1-42, December.
    5. Dan Gabriel Cacuci, 2019. "Towards Overcoming the Curse of Dimensionality: The Third-Order Adjoint Method for Sensitivity Analysis of Response-Coupled Linear Forward/Adjoint Systems, with Applications to Uncertainty Quantificat," Energies, MDPI, vol. 12(21), pages 1-34, November.
    6. Ruixian Fang & Dan Gabriel Cacuci, 2020. "Comprehensive Second-Order Adjoint Sensitivity Analysis Methodology (2nd-ASAM) Applied to a Subcritical Experimental Reactor Physics Benchmark: IV. Effects of Imprecisely Known Source Parameters," Energies, MDPI, vol. 13(6), pages 1-49, March.
    7. Dan G. Cacuci & Ruixian Fang & Jeffrey A. Favorite, 2020. "Comprehensive Second-Order Adjoint Sensitivity Analysis Methodology (2nd-ASAM) Applied to a Subcritical Experimental Reactor Physics Benchmark. VI: Overall Impact of 1st- and 2nd-Order Sensitivities o," Energies, MDPI, vol. 13(7), pages 1-37, April.
    8. Dan Gabriel Cacuci, 2022. "Overview of Arbitrarily High-Order Adjoint Sensitivity and Uncertainty Quantification Methodology for Large-Scale Systems," Energies, MDPI, vol. 15(18), pages 1-44, September.
    9. Ruixian Fang & Dan G. Cacuci, 2020. "Comprehensive Second-Order Adjoint Sensitivity Analysis Methodology (2nd-ASAM) Applied to a Subcritical Experimental Reactor Physics Benchmark: V. Computation of Mixed 2nd-Order Sensitivities Involvin," Energies, MDPI, vol. 13(10), pages 1-50, May.
    10. Dan Gabriel Cacuci, 2022. "Sensitivity Analysis, Uncertainty Quantification and Predictive Modeling of Nuclear Energy Systems," Energies, MDPI, vol. 15(17), pages 1-7, September.
    11. Dan Gabriel Cacuci, 2022. "Advances in High-Order Sensitivity Analysis for Uncertainty Quantification and Reduction in Nuclear Energy Systems," Energies, MDPI, vol. 15(17), pages 1-6, September.
    12. Dan G. Cacuci & Ruixian Fang & Jeffrey A. Favorite, 2019. "Comprehensive Second-Order Adjoint Sensitivity Analysis Methodology (2nd-ASAM) Applied to a Subcritical Experimental Reactor Physics Benchmark: I. Effects of Imprecisely Known Microscopic Total and Ca," Energies, MDPI, vol. 12(21), pages 1-43, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ruixian Fang & Dan G. Cacuci, 2020. "Comprehensive Second-Order Adjoint Sensitivity Analysis Methodology (2nd-ASAM) Applied to a Subcritical Experimental Reactor Physics Benchmark: V. Computation of Mixed 2nd-Order Sensitivities Involvin," Energies, MDPI, vol. 13(10), pages 1-50, May.
    2. Dan Gabriel Cacuci, 2021. "Fourth-Order Comprehensive Adjoint Sensitivity Analysis (4th-CASAM) of Response-Coupled Linear Forward/Adjoint Systems: I. Theoretical Framework," Energies, MDPI, vol. 14(11), pages 1-45, June.
    3. Ruixian Fang & Dan Gabriel Cacuci, 2020. "Comprehensive Second-Order Adjoint Sensitivity Analysis Methodology (2nd-ASAM) Applied to a Subcritical Experimental Reactor Physics Benchmark: IV. Effects of Imprecisely Known Source Parameters," Energies, MDPI, vol. 13(6), pages 1-49, March.
    4. Dan Gabriel Cacuci, 2021. "High-Order Deterministic Sensitivity Analysis and Uncertainty Quantification: Review and New Developments," Energies, MDPI, vol. 14(20), pages 1-53, October.
    5. Dan G. Cacuci & Ruixian Fang & Jeffrey A. Favorite, 2020. "Comprehensive Second-Order Adjoint Sensitivity Analysis Methodology (2nd-ASAM) Applied to a Subcritical Experimental Reactor Physics Benchmark. VI: Overall Impact of 1st- and 2nd-Order Sensitivities o," Energies, MDPI, vol. 13(7), pages 1-37, April.
    6. Dan Gabriel Cacuci, 2022. "Sensitivity Analysis, Uncertainty Quantification and Predictive Modeling of Nuclear Energy Systems," Energies, MDPI, vol. 15(17), pages 1-7, September.
    7. Dan Gabriel Cacuci, 2021. "The n th -Order Comprehensive Adjoint Sensitivity Analysis Methodology for Response-Coupled Forward/Adjoint Linear Systems (n th -CASAM-L): I. Mathematical Framework," Energies, MDPI, vol. 14(24), pages 1-42, December.
    8. Dan Gabriel Cacuci, 2019. "Towards Overcoming the Curse of Dimensionality: The Third-Order Adjoint Method for Sensitivity Analysis of Response-Coupled Linear Forward/Adjoint Systems, with Applications to Uncertainty Quantificat," Energies, MDPI, vol. 12(21), pages 1-34, November.
    9. Dan Gabriel Cacuci, 2021. "On the Need to Determine Accurately the Impact of Higher-Order Sensitivities on Model Sensitivity Analysis, Uncertainty Quantification and Best-Estimate Predictions," Energies, MDPI, vol. 14(19), pages 1-38, October.
    10. Dan Gabriel Cacuci, 2022. "Advances in High-Order Sensitivity Analysis for Uncertainty Quantification and Reduction in Nuclear Energy Systems," Energies, MDPI, vol. 15(17), pages 1-6, September.
    11. Dan Gabriel Cacuci, 2022. "Overview of Arbitrarily High-Order Adjoint Sensitivity and Uncertainty Quantification Methodology for Large-Scale Systems," Energies, MDPI, vol. 15(18), pages 1-44, September.
    12. Dan G. Cacuci & Ruixian Fang & Jeffrey A. Favorite, 2019. "Comprehensive Second-Order Adjoint Sensitivity Analysis Methodology (2nd-ASAM) Applied to a Subcritical Experimental Reactor Physics Benchmark: I. Effects of Imprecisely Known Microscopic Total and Ca," Energies, MDPI, vol. 12(21), pages 1-43, November.
    13. Andrew G. Buchan & Dan G. Cacuci & Steven Dargaville & Christopher C. Pain, 2022. "Optimised Adjoint Sensitivity Analysis Using Adjoint Guided Mesh Adaptivity Applied to Neutron Detector Response Calculations," Energies, MDPI, vol. 15(14), pages 1-11, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:21:p:4114-:d:281087. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.