IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i14p5102-d861485.html
   My bibliography  Save this article

Optimised Adjoint Sensitivity Analysis Using Adjoint Guided Mesh Adaptivity Applied to Neutron Detector Response Calculations

Author

Listed:
  • Andrew G. Buchan

    (School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, Bethnal Green, London E1 4NS, UK)

  • Dan G. Cacuci

    (Mechanical Engineering College of Engineering and Computing, University of South Carolina, Columbia, SC 29208, USA)

  • Steven Dargaville

    (Earth Science and Engineering, Imperial College London, Exhibition Road, South Kensington, London SW7 2BX, UK)

  • Christopher C. Pain

    (Earth Science and Engineering, Imperial College London, Exhibition Road, South Kensington, London SW7 2BX, UK)

Abstract

This article presents a new approach for the efficient calculation of sensitivities in radiation dose estimates, subject to imprecisely known nuclear material cross-section data. The method is a combined application of adjoint-based models to perform, simultaneously, both the sensitivity calculation together with optimal adaptive mesh refinement. Adjoint-based sensitivity methods are known for their efficiency since they enable sensitivities of all parameters to be formed through only two solutions to the problem. However, the efficient solutions can also be obtained by their computation on optimal meshes, here guided by goal-based adjoint approaches. It is shown that both mesh adaptivity and sensitivity can be computed by the same adjoint solution, meaning both can be performed without additional costs. A simple demonstration is presented based on the Maynard fixed-source problem where uncertainties, with respect to material cross-sections, of doses received in local regions are examined. It is shown that the method is able to calculate sensitivities with reduced computational costs in terms of memory and potentially computational time through reduced mesh size when using adaptive resolution in comparison to uniform resolution. In particular, it is the local spatial contributions to the sensitivity that are resolved more effectively due to the adaptive meshes concentrating resolution in those areas contributing the most to its value.

Suggested Citation

  • Andrew G. Buchan & Dan G. Cacuci & Steven Dargaville & Christopher C. Pain, 2022. "Optimised Adjoint Sensitivity Analysis Using Adjoint Guided Mesh Adaptivity Applied to Neutron Detector Response Calculations," Energies, MDPI, vol. 15(14), pages 1-11, July.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:14:p:5102-:d:861485
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/14/5102/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/14/5102/
    Download Restriction: no
    ---><---

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dan Gabriel Cacuci, 2021. "High-Order Deterministic Sensitivity Analysis and Uncertainty Quantification: Review and New Developments," Energies, MDPI, vol. 14(20), pages 1-53, October.
    2. Dan Gabriel Cacuci, 2022. "Sensitivity Analysis, Uncertainty Quantification and Predictive Modeling of Nuclear Energy Systems," Energies, MDPI, vol. 15(17), pages 1-7, September.
    3. Dan Gabriel Cacuci, 2021. "On the Need to Determine Accurately the Impact of Higher-Order Sensitivities on Model Sensitivity Analysis, Uncertainty Quantification and Best-Estimate Predictions," Energies, MDPI, vol. 14(19), pages 1-38, October.
    4. Dan Gabriel Cacuci, 2022. "Advances in High-Order Sensitivity Analysis for Uncertainty Quantification and Reduction in Nuclear Energy Systems," Energies, MDPI, vol. 15(17), pages 1-6, September.
    5. Dan Gabriel Cacuci, 2022. "Overview of Arbitrarily High-Order Adjoint Sensitivity and Uncertainty Quantification Methodology for Large-Scale Systems," Energies, MDPI, vol. 15(18), pages 1-44, September.
    6. Dan Gabriel Cacuci, 2021. "Fourth-Order Comprehensive Adjoint Sensitivity Analysis (4th-CASAM) of Response-Coupled Linear Forward/Adjoint Systems: I. Theoretical Framework," Energies, MDPI, vol. 14(11), pages 1-45, June.
    7. Dan Gabriel Cacuci, 2021. "The n th -Order Comprehensive Adjoint Sensitivity Analysis Methodology for Response-Coupled Forward/Adjoint Linear Systems (n th -CASAM-L): I. Mathematical Framework," Energies, MDPI, vol. 14(24), pages 1-42, December.
    8. Ruixian Fang & Dan G. Cacuci, 2020. "Comprehensive Second-Order Adjoint Sensitivity Analysis Methodology (2nd-ASAM) Applied to a Subcritical Experimental Reactor Physics Benchmark: V. Computation of Mixed 2nd-Order Sensitivities Involvin," Energies, MDPI, vol. 13(10), pages 1-50, May.
    9. Dan G. Cacuci & Ruixian Fang & Jeffrey A. Favorite, 2020. "Comprehensive Second-Order Adjoint Sensitivity Analysis Methodology (2nd-ASAM) Applied to a Subcritical Experimental Reactor Physics Benchmark. VI: Overall Impact of 1st- and 2nd-Order Sensitivities o," Energies, MDPI, vol. 13(7), pages 1-37, April.
    10. Jerzy Cetnar & Przemysław Stanisz & Mikołaj Oettingen, 2021. "Linear Chain Method for Numerical Modelling of Burnup Systems," Energies, MDPI, vol. 14(6), pages 1-19, March.
    11. Ruixian Fang & Dan Gabriel Cacuci, 2020. "Comprehensive Second-Order Adjoint Sensitivity Analysis Methodology (2nd-ASAM) Applied to a Subcritical Experimental Reactor Physics Benchmark: IV. Effects of Imprecisely Known Source Parameters," Energies, MDPI, vol. 13(6), pages 1-49, March.
    12. Ruixian Fang & Dan Gabriel Cacuci, 2019. "Comprehensive Second-Order Adjoint Sensitivity Analysis Methodology (2nd-ASAM) Applied to a Subcritical Experimental Reactor Physics Benchmark: II. Effects of Imprecisely Known Microscopic Scattering ," Energies, MDPI, vol. 12(21), pages 1-33, October.
    13. Dan Gabriel Cacuci, 2019. "Towards Overcoming the Curse of Dimensionality: The Third-Order Adjoint Method for Sensitivity Analysis of Response-Coupled Linear Forward/Adjoint Systems, with Applications to Uncertainty Quantificat," Energies, MDPI, vol. 12(21), pages 1-34, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:14:p:5102-:d:861485. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.