IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i21p4100-d280806.html
   My bibliography  Save this article

Comprehensive Second-Order Adjoint Sensitivity Analysis Methodology (2nd-ASAM) Applied to a Subcritical Experimental Reactor Physics Benchmark: III. Effects of Imprecisely Known Microscopic Fission Cross Sections and Average Number of Neutrons per Fission

Author

Listed:
  • D. G. Cacuci

    (Center for Nuclear Science and Energy, Department of Mechanical Engineering, University of South Carolina, Columbia, SC 29208, USA)

  • R. Fang

    (Center for Nuclear Science and Energy, Department of Mechanical Engineering, University of South Carolina, Columbia, SC 29208, USA)

  • J. A. Favorite

    (Los Alamos National Laboratory, Applied Physics (X) Division, MS F663, Los Alamos, NM 87545, USA)

  • M. C. Badea

    (Center for Nuclear Science and Energy, Department of Mechanical Engineering, University of South Carolina, Columbia, SC 29208, USA)

  • F. Di Rocco

    (Center for Nuclear Science and Energy, Department of Mechanical Engineering, University of South Carolina, Columbia, SC 29208, USA)

Abstract

The Second-Order Adjoint Sensitivity Analysis Methodology (2nd-ASAM) is applied to compute the first-order and second-order sensitivities of the leakage response of a polyethylene-reflected plutonium (PERP) experimental system with respect to the following nuclear data: Group-averaged isotopic microscopic fission cross sections, mixed fission/total, fission/scattering cross sections, average number of neutrons per fission (), mixed /total cross sections, /scattering cross sections, and /fission cross sections. The numerical results obtained indicate that the 1st-order relative sensitivities for these nuclear data are smaller than the 1st-order sensitivities of the PERP leakage response with respect to the total cross sections but are larger than those with respect to the scattering cross sections. The vast majority of the 2nd-order unmixed sensitivities are smaller than the corresponding 1st-order ones, but several 2nd-order mixed relative sensitivities are larger than the 1st-order ones. In particular, several 2nd-order sensitivities for 239 Pu are significantly larger than the corresponding 1st-order ones. It is also shown that the effects of the 2nd-order sensitivities of the PERP benchmark’s leakage response with respect to the benchmark’s parameters underlying the average number of neutrons per fission, , on the moments (expected value, variance, and skewness) of the PERP benchmark’s leakage response distribution are negligible by comparison to the corresponding effects (on the response distribution) stemming from uncertainties in the total cross sections, but are larger than the corresponding effects (on the response distribution) stemming from uncertainties in the fission and scattering cross sections.

Suggested Citation

  • D. G. Cacuci & R. Fang & J. A. Favorite & M. C. Badea & F. Di Rocco, 2019. "Comprehensive Second-Order Adjoint Sensitivity Analysis Methodology (2nd-ASAM) Applied to a Subcritical Experimental Reactor Physics Benchmark: III. Effects of Imprecisely Known Microscopic Fission Cr," Energies, MDPI, vol. 12(21), pages 1-67, October.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:21:p:4100-:d:280806
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/21/4100/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/21/4100/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dan Gabriel Cacuci, 2021. "On the Need to Determine Accurately the Impact of Higher-Order Sensitivities on Model Sensitivity Analysis, Uncertainty Quantification and Best-Estimate Predictions," Energies, MDPI, vol. 14(19), pages 1-38, October.
    2. Dan Gabriel Cacuci, 2021. "Fourth-Order Comprehensive Adjoint Sensitivity Analysis (4th-CASAM) of Response-Coupled Linear Forward/Adjoint Systems: I. Theoretical Framework," Energies, MDPI, vol. 14(11), pages 1-45, June.
    3. Dan Gabriel Cacuci, 2021. "High-Order Deterministic Sensitivity Analysis and Uncertainty Quantification: Review and New Developments," Energies, MDPI, vol. 14(20), pages 1-53, October.
    4. Dan Gabriel Cacuci, 2021. "The n th -Order Comprehensive Adjoint Sensitivity Analysis Methodology for Response-Coupled Forward/Adjoint Linear Systems (n th -CASAM-L): I. Mathematical Framework," Energies, MDPI, vol. 14(24), pages 1-42, December.
    5. Dan Gabriel Cacuci, 2019. "Towards Overcoming the Curse of Dimensionality: The Third-Order Adjoint Method for Sensitivity Analysis of Response-Coupled Linear Forward/Adjoint Systems, with Applications to Uncertainty Quantificat," Energies, MDPI, vol. 12(21), pages 1-34, November.
    6. Ruixian Fang & Dan Gabriel Cacuci, 2020. "Comprehensive Second-Order Adjoint Sensitivity Analysis Methodology (2nd-ASAM) Applied to a Subcritical Experimental Reactor Physics Benchmark: IV. Effects of Imprecisely Known Source Parameters," Energies, MDPI, vol. 13(6), pages 1-49, March.
    7. Dan G. Cacuci & Ruixian Fang & Jeffrey A. Favorite, 2020. "Comprehensive Second-Order Adjoint Sensitivity Analysis Methodology (2nd-ASAM) Applied to a Subcritical Experimental Reactor Physics Benchmark. VI: Overall Impact of 1st- and 2nd-Order Sensitivities o," Energies, MDPI, vol. 13(7), pages 1-37, April.
    8. Dan Gabriel Cacuci, 2022. "Overview of Arbitrarily High-Order Adjoint Sensitivity and Uncertainty Quantification Methodology for Large-Scale Systems," Energies, MDPI, vol. 15(18), pages 1-44, September.
    9. Ruixian Fang & Dan G. Cacuci, 2020. "Comprehensive Second-Order Adjoint Sensitivity Analysis Methodology (2nd-ASAM) Applied to a Subcritical Experimental Reactor Physics Benchmark: V. Computation of Mixed 2nd-Order Sensitivities Involvin," Energies, MDPI, vol. 13(10), pages 1-50, May.
    10. Dan Gabriel Cacuci, 2022. "Sensitivity Analysis, Uncertainty Quantification and Predictive Modeling of Nuclear Energy Systems," Energies, MDPI, vol. 15(17), pages 1-7, September.
    11. Ruixian Fang & Dan Gabriel Cacuci, 2019. "Comprehensive Second-Order Adjoint Sensitivity Analysis Methodology (2nd-ASAM) Applied to a Subcritical Experimental Reactor Physics Benchmark: II. Effects of Imprecisely Known Microscopic Scattering ," Energies, MDPI, vol. 12(21), pages 1-33, October.
    12. Dan Gabriel Cacuci, 2022. "Advances in High-Order Sensitivity Analysis for Uncertainty Quantification and Reduction in Nuclear Energy Systems," Energies, MDPI, vol. 15(17), pages 1-6, September.
    13. Dan G. Cacuci & Ruixian Fang & Jeffrey A. Favorite, 2019. "Comprehensive Second-Order Adjoint Sensitivity Analysis Methodology (2nd-ASAM) Applied to a Subcritical Experimental Reactor Physics Benchmark: I. Effects of Imprecisely Known Microscopic Total and Ca," Energies, MDPI, vol. 12(21), pages 1-43, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:21:p:4100-:d:280806. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.