IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i20p3893-d276545.html
   My bibliography  Save this article

Environmental and Efficiency Analysis of Simulated Application of the Solid Oxide Fuel Cell Co-Generation System in a Dormitory Building

Author

Listed:
  • Han Chang

    (Department of Architecture, Pusan National University, Busan 46241, Korea)

  • In-Hee Lee

    (Department of Architecture, Pusan National University, Busan 46241, Korea)

Abstract

The problem of air pollution in Korea has become progressively more serious in recent years. Since electricity is advertised as clean energy, some newly developed buildings in Korea are using only electricity for all energy needs. In this research, the annual amount of air pollution attributable to energy under the traditional method in a dormitory building, which is supplying both natural gas and electricity to the building, was compared with the annual amount of air pollution attributable to supplying only electricity. The results showed that the building using only electricity emits much more air pollution than the building using electricity and natural gas together. Under the traditional method of energy supply, a residential solid oxide fuel cell cogeneration system (SOFC–CGS) for minimizing environmental pollution of the building was simulated. Furthermore, as a high load factor could lead to high efficiency of the SOFC–CGS, sharing of the SOFC–CGS by multi-households could increase its efficiency. Finally, the environmental pollution from using one system in one household was compared with that from sharing one system by multi-households. The results showed that the environmental pollution from sharing the system was relatively higher but still similar to that when using one system in one household.

Suggested Citation

  • Han Chang & In-Hee Lee, 2019. "Environmental and Efficiency Analysis of Simulated Application of the Solid Oxide Fuel Cell Co-Generation System in a Dormitory Building," Energies, MDPI, vol. 12(20), pages 1-20, October.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:20:p:3893-:d:276545
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/20/3893/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/20/3893/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lim, Seul-Ye & Kim, Hyo-Jin & Yoo, Seung-Hoon, 2018. "Household willingness to pay for expanding fuel cell power generation in Korea: A view from CO2 emissions reduction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 242-249.
    2. Ramadhani, Farah & Hussain, M.A. & Mokhlis, Hazlie & Fazly, Muhamad & Ali, Jarinah Mohd., 2019. "Evaluation of solid oxide fuel cell based polygeneration system in residential areas integrating with electric charging and hydrogen fueling stations for vehicles," Applied Energy, Elsevier, vol. 238(C), pages 1373-1388.
    3. van Biert, L. & Godjevac, M. & Visser, K. & Aravind, P.V., 2019. "Dynamic modelling of a direct internal reforming solid oxide fuel cell stack based on single cell experiments," Applied Energy, Elsevier, vol. 250(C), pages 976-990.
    4. Kim, Ju-Hee & Kim, Hyo-Jin & Yoo, Seung-Hoon, 2019. "Willingness to pay for fuel-cell electric vehicles in South Korea," Energy, Elsevier, vol. 174(C), pages 497-502.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chien-Chang Wu & Tsung-Lin Chen, 2020. "Design and Experiment of a Power Sharing Control Circuit for Parallel Fuel Cell Modules," Energies, MDPI, vol. 13(11), pages 1-23, June.
    2. Tomasz A. Prokop & Katarzyna Berent & Marcin Mozdzierz & Janusz S. Szmyd & Grzegorz Brus, 2019. "A Three-Dimensional Microstructure-Scale Simulation of a Solid Oxide Fuel Cell Anode—The Analysis of Stack Performance Enhancement After a Long-Term Operation," Energies, MDPI, vol. 12(24), pages 1-16, December.
    3. Chien-Chang Wu & Tsung-Lin Chen, 2020. "Dynamic Modeling of a Parallel-Connected Solid Oxide Fuel Cell Stack System," Energies, MDPI, vol. 13(2), pages 1-20, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ju-Hee Kim & Young-Kuk Kim & Seung-Hoon Yoo, 2023. "Does Proximity to a Power Plant Affect Housing Property Values of a City in South Korea? An Empirical Investigation," Energies, MDPI, vol. 16(4), pages 1-14, February.
    2. Yang, Jie & Yu, Fan & Ma, Kai & Yang, Bo & Yue, Zhiyuan, 2024. "Optimal scheduling of electric-hydrogen integrated charging station for new energy vehicles," Renewable Energy, Elsevier, vol. 224(C).
    3. Xu, Yuan-wu & Wu, Xiao-long & Zhong, Xiao-bo & Zhao, Dong-qi & Sorrentino, Marco & Jiang, Jianhua & Jiang, Chang & Fu, Xiaowei & Li, Xi, 2021. "Mechanism model-based and data-driven approach for the diagnosis of solid oxide fuel cell stack leakage," Applied Energy, Elsevier, vol. 286(C).
    4. Jia, Wenjian & Jiang, Zhiqiu & Wang, Qian & Xu, Bin & Xiao, Mei, 2023. "Preferences for zero-emission vehicle attributes: Comparing early adopters with mainstream consumers in California," Transport Policy, Elsevier, vol. 135(C), pages 21-32.
    5. Zhong, Like & Yao, Erren & Zou, Hansen & Xi, Guang, 2022. "Thermodynamic and economic analysis of a directly solar-driven power-to-methane system by detailed distributed parameter method," Applied Energy, Elsevier, vol. 312(C).
    6. Hye-Min Kim & In-Gyum Kim & Byunghwan Lim & Seung-Hoon Yoo, 2021. "Estimating the Economic Value of Improving the Asian Dust Aerosol Model in the Korean Household Sector: A Choice Experiment," Sustainability, MDPI, vol. 13(21), pages 1-11, November.
    7. Balezentis, Tomas & Streimikiene, Dalia & Mikalauskas, Ignas & Shen, Zhiyang, 2021. "Towards carbon free economy and electricity: The puzzle of energy costs, sustainability and security based on willingness to pay," Energy, Elsevier, vol. 214(C).
    8. Gallo, Marco & Costabile, Carmine & Sorrentino, Marco & Polverino, Pierpaolo & Pianese, Cesare, 2020. "Development and application of a comprehensive model-based methodology for fault mitigation of fuel cell powered systems," Applied Energy, Elsevier, vol. 279(C).
    9. Ko, Sungmin & Shin, Jungwoo, 2023. "Projection of fuel cell electric vehicle demand reflecting the feedback effects between market conditions and market share affected by spatial factors," Energy Policy, Elsevier, vol. 173(C).
    10. Oryani, Bahareh & Koo, Yoonmo & Shafiee, Afsaneh & Rezania, Shahabaldin & Jung, Jiyeon & Choi, Hyunhong & Khan, Muhammad Kamran, 2022. "Heterogeneous preferences for EVs: Evidence from Iran," Renewable Energy, Elsevier, vol. 181(C), pages 675-691.
    11. Hammerle, Mara & Best, Rohan & Crosby, Paul, 2021. "Public acceptance of carbon taxes in Australia," Energy Economics, Elsevier, vol. 101(C).
    12. Jaržemskis Andrius & Jaržemskienė Ilona, 2022. "European Green Deal Implications on Country Level Energy Consumption," Folia Oeconomica Stetinensia, Sciendo, vol. 22(2), pages 97-122, December.
    13. Kim, Hyo-Jin & Lee, Hye-Jeong & Yoo, Seung-Hoon, 2018. "Are South Korean people willing to pay for official development assistance for building renewable power plants in developing countries?," Energy Policy, Elsevier, vol. 118(C), pages 626-632.
    14. Fan, Liyuan & Li, Chao'en & van Biert, Lindert & Zhou, Shou-Han & Tabish, Asif Nadeem & Mokhov, Anatoli & Aravind, Purushothaman Vellayani & Cai, Weiwei, 2022. "Advances on methane reforming in solid oxide fuel cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
    15. Marco Sorrentino & Antonio Adamo & Gianmarco Nappi, 2019. "Self-Sufficient and Islanded-Oriented Design of a Reversible Solid Oxide Cell-Based Renewable Microgrid," Energies, MDPI, vol. 12(17), pages 1-15, August.
    16. Ma, Shuai & Lin, Meng & Lin, Tzu-En & Lan, Tian & Liao, Xun & Maréchal, François & Van herle, Jan & Yang, Yongping & Dong, Changqing & Wang, Ligang, 2021. "Fuel cell-battery hybrid systems for mobility and off-grid applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    17. Eun-Jung Choi & Sangseok Yu & Ji-Min Kim & Sang-Min Lee, 2021. "Model-Based System Performance Analysis of a Solid Oxide Fuel Cell System with Anode Off-Gas Recirculation," Energies, MDPI, vol. 14(12), pages 1-22, June.
    18. Lee, Wooseok & Bae, Yonggyun & Lee, Sanghyeok & Hong, Jongsup, 2024. "Elucidating the dynamic transport phenomena of solid oxide fuel cells according to rapid electrical load change operation," Applied Energy, Elsevier, vol. 359(C).
    19. van Biert, L. & Visser, K. & Aravind, P.V., 2020. "A comparison of steam reforming concepts in solid oxide fuel cell systems," Applied Energy, Elsevier, vol. 264(C).
    20. Kim, Kyungah & Moon, Sungho & Kim, Junghun, 2023. "How far is it from your home? Strategic policy and management to overcome barriers of introducing fuel-cell power generation facilities," Energy Policy, Elsevier, vol. 182(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:20:p:3893-:d:276545. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.