IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i19p3764-d272832.html
   My bibliography  Save this article

Thermal and Catalytic Cracking of Toluene Using Char from Commercial Gasification Systems

Author

Listed:
  • Eleonora Cordioli

    (Faculty of Science and Technology, Free University of Bolzano, Piazza Università 5, 39100 Bolzano, Italy)

  • Francesco Patuzzi

    (Faculty of Science and Technology, Free University of Bolzano, Piazza Università 5, 39100 Bolzano, Italy)

  • Marco Baratieri

    (Faculty of Science and Technology, Free University of Bolzano, Piazza Università 5, 39100 Bolzano, Italy)

Abstract

Tar formation hinders the development of biomass gasification technologies. The use of pyrolytic char as a catalyst for removing tar has been widely investigated; its large specific surface area and pores distribution make it a good candidate for the cracking of heavy hydrocarbons. The present work assesses the catalytic activity of char from a commercial gasifier. Thermal degradation tests in N 2 and in CO 2 proved that the char is suitable for high-temperature applications (catalytic cracking) and showed release of CO and H 2 , which might affect the catalytic performance of the char when used for tar removal applications. For inspecting the potential of the char for tar removal, toluene was chosen as model tar. Through GC-FID, toluene removal efficiency and the amount of benzene produced from its decomposition were evaluated. Tests up to 1273 K resulted in tar removal efficiencies as high as 99.0%, and empty reactor tests allowed for discerning the effects of thermal and catalytic cracking. The catalytic activity of the char was more pronounced at 1173 K, as char increased the toluene removal efficiency from 39.9% (empty reactor) to 60.3%. The results confirmed that gasification char, like pyrolytic char, has a high potential for catalytic tar removal applications.

Suggested Citation

  • Eleonora Cordioli & Francesco Patuzzi & Marco Baratieri, 2019. "Thermal and Catalytic Cracking of Toluene Using Char from Commercial Gasification Systems," Energies, MDPI, vol. 12(19), pages 1-16, October.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:19:p:3764-:d:272832
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/19/3764/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/19/3764/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hu, Mian & Laghari, Mahmood & Cui, Baihui & Xiao, Bo & Zhang, Beiping & Guo, Dabin, 2018. "Catalytic cracking of biomass tar over char supported nickel catalyst," Energy, Elsevier, vol. 145(C), pages 228-237.
    2. Ravenni, G. & Elhami, O.H. & Ahrenfeldt, J. & Henriksen, U.B. & Neubauer, Y., 2019. "Adsorption and decomposition of tar model compounds over the surface of gasification char and active carbon within the temperature range 250–800 °C," Applied Energy, Elsevier, vol. 241(C), pages 139-151.
    3. Ravenni, Giulia & Sárossy, Zsuzsa & Ahrenfeldt, Jesper & Henriksen, Ulrik Birk, 2018. "Activity of chars and activated carbons for removal and decomposition of tar model compounds – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 1044-1056.
    4. Devi, Lopamudra & Ptasinski, Krzysztof J. & Janssen, Frans J.J.G. & van Paasen, Sander V.B. & Bergman, Patrick C.A. & Kiel, Jacob H.A., 2005. "Catalytic decomposition of biomass tars: use of dolomite and untreated olivine," Renewable Energy, Elsevier, vol. 30(4), pages 565-587.
    5. Asadullah, Mohammad, 2014. "Biomass gasification gas cleaning for downstream applications: A comparative critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 118-132.
    6. Bhandari, Pushpak N. & Kumar, Ajay & Bellmer, Danielle D. & Huhnke, Raymond L., 2014. "Synthesis and evaluation of biochar-derived catalysts for removal of toluene (model tar) from biomass-generated producer gas," Renewable Energy, Elsevier, vol. 66(C), pages 346-353.
    7. Lee, Jechan & Kim, Ki-Hyun & Kwon, Eilhann E., 2017. "Biochar as a Catalyst," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 70-79.
    8. Anis, Samsudin & Zainal, Z.A., 2011. "Tar reduction in biomass producer gas via mechanical, catalytic and thermal methods: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(5), pages 2355-2377, June.
    9. Nzihou, Ange & Stanmore, Brian & Sharrock, Patrick, 2013. "A review of catalysts for the gasification of biomass char, with some reference to coal," Energy, Elsevier, vol. 58(C), pages 305-317.
    10. Patuzzi, Francesco & Prando, Dario & Vakalis, Stergios & Rizzo, Andrea Maria & Chiaramonti, David & Tirler, Werner & Mimmo, Tanja & Gasparella, Andrea & Baratieri, Marco, 2016. "Small-scale biomass gasification CHP systems: Comparative performance assessment and monitoring experiences in South Tyrol (Italy)," Energy, Elsevier, vol. 112(C), pages 285-293.
    11. Benedetti, Vittoria & Patuzzi, Francesco & Baratieri, Marco, 2018. "Characterization of char from biomass gasification and its similarities with activated carbon in adsorption applications," Applied Energy, Elsevier, vol. 227(C), pages 92-99.
    12. Buentello-Montoya, D.A. & Zhang, X. & Li, J., 2019. "The use of gasification solid products as catalysts for tar reforming," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 399-412.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cristina Moliner & Filippo Marchelli & Elisabetta Arato, 2020. "Current Status of Energy Production from Solid Biomass in North-West Italy," Energies, MDPI, vol. 13(17), pages 1-29, August.
    2. Ali Abdelaal & Vittoria Benedetti & Audrey Villot & Francesco Patuzzi & Claire Gerente & Marco Baratieri, 2023. "Innovative Pathways for the Valorization of Biomass Gasification Char: A Systematic Review," Energies, MDPI, vol. 16(10), pages 1-24, May.
    3. Patuzzi, Francesco & Basso, Daniele & Vakalis, Stergios & Antolini, Daniele & Piazzi, Stefano & Benedetti, Vittoria & Cordioli, Eleonora & Baratieri, Marco, 2021. "State-of-the-art of small-scale biomass gasification systems: An extensive and unique monitoring review," Energy, Elsevier, vol. 223(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Shuxiao & Shan, Rui & Lu, Tao & Zhang, Yuyuan & Yuan, Haoran & Chen, Yong, 2020. "Pyrolysis char derived from waste peat for catalytic reforming of tar model compound," Applied Energy, Elsevier, vol. 263(C).
    2. Yang, Haiping & Chen, Zhiqun & Chen, Wei & Chen, Yingquan & Wang, Xianhua & Chen, Hanping, 2020. "Role of porous structure and active O-containing groups of activated biochar catalyst during biomass catalytic pyrolysis," Energy, Elsevier, vol. 210(C).
    3. Korus, Agnieszka & Ravenni, Giulia & Loska, Krzysztof & Korus, Irena & Samson, Abby & Szlęk, Andrzej, 2021. "The importance of inherent inorganics and the surface area of wood char for its gasification reactivity and catalytic activity towards toluene conversion," Renewable Energy, Elsevier, vol. 173(C), pages 479-497.
    4. Gao, Ningbo & Salisu, Jamilu & Quan, Cui & Williams, Paul, 2021. "Modified nickel-based catalysts for improved steam reforming of biomass tar: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    5. Wang, Shuxiao & Zhang, Yuyuan & Shan, Rui & Gu, Jing & Yuan, Haoran & Chen, Yong, 2022. "Steam reforming of biomass tar model compound over two waste char-based Ni catalysts for syngas production," Energy, Elsevier, vol. 246(C).
    6. Shahbaz, Muhammad & Al-Ansari, Tareq & Inayat, Muddasser & Sulaiman, Shaharin A. & Parthasarathy, Prakash & McKay, Gordon, 2020. "A critical review on the influence of process parameters in catalytic co-gasification: Current performance and challenges for a future prospectus," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    7. Cristina Moliner & Filippo Marchelli & Elisabetta Arato, 2020. "Current Status of Energy Production from Solid Biomass in North-West Italy," Energies, MDPI, vol. 13(17), pages 1-29, August.
    8. Zhang, Shuping & Yin, Haoxin & Wang, Jiaxing & Zhu, Shuguang & Xiong, Yuanquan, 2021. "Catalytic cracking of biomass tar using Ni nanoparticles embedded carbon nanofiber/porous carbon catalysts," Energy, Elsevier, vol. 216(C).
    9. Gu, Jing & Wang, Shuxiao & Lu, Tao & Wu, Yufeng & Yuan, Haoran & Chen, Yong, 2020. "Synthesis and evaluation of pyrolysis waste peat char supported catalyst for steam reforming of toluene," Renewable Energy, Elsevier, vol. 160(C), pages 964-973.
    10. Zhang, Zhikun & Zhu, Zongyuan & Shen, Boxiong & Liu, Lina, 2019. "Insights into biochar and hydrochar production and applications: A review," Energy, Elsevier, vol. 171(C), pages 581-598.
    11. Guan, Guoqing & Kaewpanha, Malinee & Hao, Xiaogang & Abudula, Abuliti, 2016. "Catalytic steam reforming of biomass tar: Prospects and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 450-461.
    12. Hervy, Maxime & Weiss-Hortala, Elsa & Pham Minh, Doan & Dib, Hadi & Villot, Audrey & Gérente, Claire & Berhanu, Sarah & Chesnaud, Anthony & Thorel, Alain & Le Coq, Laurence & Nzihou, Ange, 2019. "Reactivity and deactivation mechanisms of pyrolysis chars from bio-waste during catalytic cracking of tar," Applied Energy, Elsevier, vol. 237(C), pages 487-499.
    13. Ud Din, Zia & Zainal, Z.A., 2016. "Biomass integrated gasification–SOFC systems: Technology overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1356-1376.
    14. Li, Bin & Magoua Mbeugang, Christian Fabrice & Huang, Yong & Liu, Dongjing & Wang, Qian & Zhang, Shu, 2022. "A review of CaO based catalysts for tar removal during biomass gasification," Energy, Elsevier, vol. 244(PB).
    15. Ud Din, Zia & Zainal, Z.A., 2017. "The fate of SOFC anodes under biomass producer gas contaminants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 1050-1066.
    16. Huchon, V. & Martin, E. & Pinta, F. & Commandré, J.M. & Van de steene, L., 2024. "Conversion in a char bed reactor of tars and syngas from a wood gasifier," Energy, Elsevier, vol. 288(C).
    17. Rakesh N, & Dasappa, S., 2018. "A critical assessment of tar generated during biomass gasification - Formation, evaluation, issues and mitigation strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 1045-1064.
    18. Ali Abdelaal & Vittoria Benedetti & Audrey Villot & Francesco Patuzzi & Claire Gerente & Marco Baratieri, 2023. "Innovative Pathways for the Valorization of Biomass Gasification Char: A Systematic Review," Energies, MDPI, vol. 16(10), pages 1-24, May.
    19. Hernández, J.J. & Saffe, A. & Collado, R. & Monedero, E., 2020. "Recirculation of char from biomass gasification: Effects on gasifier performance and end-char properties," Renewable Energy, Elsevier, vol. 147(P1), pages 806-813.
    20. Patuzzi, Francesco & Basso, Daniele & Vakalis, Stergios & Antolini, Daniele & Piazzi, Stefano & Benedetti, Vittoria & Cordioli, Eleonora & Baratieri, Marco, 2021. "State-of-the-art of small-scale biomass gasification systems: An extensive and unique monitoring review," Energy, Elsevier, vol. 223(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:19:p:3764-:d:272832. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.