IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i19p3747-d272393.html
   My bibliography  Save this article

Towards a Low Emission Transport System: Evaluating the Public Health and Environmental Benefits

Author

Listed:
  • Hooman Farzaneh

    (Platform of Inter/Transdisciplinary Energy Research, Kyushu University, Fukuoka 819–0395, Japan
    Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Fukuoka 816–8580, Japan)

  • Jose A. Puppim de Oliveira

    (Fundação Getulio Vargas (FGV/EAESP and FGV/EBAPE), Rua Jornalista Orlando Dantas, 30 - Botafogo, Rio de Janeiro/RJ CEP 22231-010, Brazil)

  • Benjamin McLellan

    (Graduate School of Energy Science, Kyoto University, Kyoto 606–8317, Japan)

  • Hideaki Ohgaki

    (Institute of Advanced Energy, Kyoto University, Kyoto 611–0011, Japan)

Abstract

Climate change mitigation strategies offer significant societal co-benefits such as improvement in public health, air quality, local economy, and even safety. By considering these co-benefits during the transportation planning process, local governments would be able to link their local appreciate mitigation actions into the Sustainable Development Goals (SDGs), where diverse objectives should be achieved simultaneously. This study first clarifies the co-benefits approach to climate change mitigation in the transport system, by introducing an integrated multiple-impact framework known as A-S-I (Avoid-Shift-Improve) to evaluate the co-benefits. Thereafter, it applies the quantitative modeling approach to assess public health and environmental co-benefits of the implementation of the Tehran Transportation Master Plan, “the TTMP” in the city of Tehran, Iran, which includes targeted interventions such as shifting from private vehicles to the urban transport system, improving vehicle technologies and introducing alternative fuels. The results from the application of “the TTMP” reveal a significant reduction of CO 2 and other local air pollutant emissions by 12.9 and 1.4 million tons, respectively, prevention of about 10,000 mortality cases, and more than USD 35 million savings by 2030.

Suggested Citation

  • Hooman Farzaneh & Jose A. Puppim de Oliveira & Benjamin McLellan & Hideaki Ohgaki, 2019. "Towards a Low Emission Transport System: Evaluating the Public Health and Environmental Benefits," Energies, MDPI, vol. 12(19), pages 1-17, September.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:19:p:3747-:d:272393
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/19/3747/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/19/3747/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Saboohi, Y. & Farzaneh, H., 2009. "Model for developing an eco-driving strategy of a passenger vehicle based on the least fuel consumption," Applied Energy, Elsevier, vol. 86(10), pages 1925-1932, October.
    2. Maizlish, N. & Woodcock, J. & Co, S. & Ostro, B. & Fanai, A. & Fairley, D., 2013. "Health cobenefits and transportation-related reductions in greenhouse gas emissions in the San Francisco Bay Area," American Journal of Public Health, American Public Health Association, vol. 103(4), pages 703-709.
    3. Timilsina, Govinda R. & Shrestha, Ashish, 2009. "Why have CO2 emissions increased in the transport sector in Asia ? underlying factors and policy options," Policy Research Working Paper Series 5098, The World Bank.
    4. Lee, Zhi Hua & Sethupathi, Sumathi & Lee, Keat Teong & Bhatia, Subhash & Mohamed, Abdul Rahman, 2013. "An overview on global warming in Southeast Asia: CO2 emission status, efforts done, and barriers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 71-81.
    5. Timilsina, Govinda R. & Shrestha, Ashish, 2009. "Transport sector CO2 emissions growth in Asia: Underlying factors and policy options," Energy Policy, Elsevier, vol. 37(11), pages 4523-4539, November.
    6. Mayrhofer, Jan P. & Gupta, Joyeeta, 2016. "The science and politics of co-benefits in climate policy," Environmental Science & Policy, Elsevier, vol. 57(C), pages 22-30.
    7. Keshavarzian, Maryam & Kamali Anaraki, Sara & Zamani, Mehrzad & Erfanifard, Ali, 2012. "Projections of oil demand in road transportation sector on the basis of vehicle ownership projections, worldwide: 1972–2020," Economic Modelling, Elsevier, vol. 29(5), pages 1979-1985.
    8. Anil Markandaya & Ben Armstrong & Simon Hales & Aline Chiabai & Patrick Criqui & Silvana Mima, 2009. "Impact on public health of strategies to reduce greenhouse gases : low carbon electricity generation," Post-Print halshs-00459664, HAL.
    9. Stéphane Hallegatte & Jan Corfee-Morlot, 2011. "Understanding climate change impacts, vulnerability and adaptation at city scale: an introduction," Climatic Change, Springer, vol. 104(1), pages 1-12, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Miao & Feng, Chao, 2021. "The consequences of industrial restructuring, regional balanced development, and market-oriented reform for China's carbon dioxide emissions: A multi-tier meta-frontier DEA-based decomposition analysi," Technological Forecasting and Social Change, Elsevier, vol. 164(C).
    2. Reham Alhindawi & Yousef Abu Nahleh & Arun Kumar & Nirajan Shiwakoti, 2020. "Projection of Greenhouse Gas Emissions for the Road Transport Sector Based on Multivariate Regression and the Double Exponential Smoothing Model," Sustainability, MDPI, vol. 12(21), pages 1-18, November.
    3. Masato Abe, 2011. "Achieving a sustainable automotive sector in Asia and the Pacific: Challenges and opportunities for the reduction of vehicle CO2 emissions," Working Papers 10811, Asia-Pacific Research and Training Network on Trade (ARTNeT), an initiative of UNESCAP and IDRC, Canada..
    4. González, Rosa Marina & Marrero, Gustavo A. & Rodríguez-López, Jesús & Marrero, Ángel S., 2019. "Analyzing CO2 emissions from passenger cars in Europe: A dynamic panel data approach," Energy Policy, Elsevier, vol. 129(C), pages 1271-1281.
    5. Andreoni, V. & Galmarini, S., 2012. "European CO2 emission trends: A decomposition analysis for water and aviation transport sectors," Energy, Elsevier, vol. 45(1), pages 595-602.
    6. Manel Daldoul & Ahlem Dakhlaoui, 2018. "Using the LMDI Decomposition Approach to Analyze the Influencing Factors of Carbon Emissions in Tunisian Transportation Sector," International Journal of Energy Economics and Policy, Econjournals, vol. 8(6), pages 22-28.
    7. Robaina, Margarita & Neves, Ana, 2021. "Complete decomposition analysis of CO2 emissions intensity in the transport sector in Europe," Research in Transportation Economics, Elsevier, vol. 90(C).
    8. M'raihi, Rafaa & Mraihi, Talel & Harizi, Riadh & Taoufik Bouzidi, Mohamed, 2015. "Carbon emissions growth and road freight: Analysis of the influencing factors in Tunisia," Transport Policy, Elsevier, vol. 42(C), pages 121-129.
    9. Xiaoshu Cao & Shishu OuYang & Dan Liu & Wenyue Yang, 2019. "Spatiotemporal Patterns and Decomposition Analysis of CO 2 Emissions from Transportation in the Pearl River Delta," Energies, MDPI, vol. 12(11), pages 1-17, June.
    10. Cai, Bofeng & Yang, Weishan & Cao, Dong & Liu, Lancui & Zhou, Ying & Zhang, Zhansheng, 2012. "Estimates of China's national and regional transport sector CO2 emissions in 2007," Energy Policy, Elsevier, vol. 41(C), pages 474-483.
    11. Paudel, Krishna P. & Timilsina, Govinda R., 2010. "Would There Be Surplus Grains for Biofuels? An Assessment of Agro-economic Factors and Biofuel Production Potential at the Global Level," Staff Papers 113125, Louisiana State University, Department of Agricultural Economics and Agribusiness.
    12. Anwar, Ahsan & Sharif, Arshian & Fatima, Saba & Ahmad, Paiman & Sinha, Avik & Khan, Syed Abdul Rehman & Jermsittiparsert, Kittisak, 2021. "The asymmetric effect of public private partnership investment on transport CO2 emission in China: Evidence from quantile ARDL approach," MPRA Paper 108160, University Library of Munich, Germany, revised 2021.
    13. Ben Abdallah, Khaled & Belloumi, Mounir & De Wolf, Daniel, 2015. "International comparisons of energy and environmental efficiency in the road transport sector," Energy, Elsevier, vol. 93(P2), pages 2087-2101.
    14. Wang, Zhenguo & Su, Bin & Xie, Rui & Long, Haiyu, 2020. "China’s aggregate embodied CO2 emission intensity from 2007 to 2012: A multi-region multiplicative structural decomposition analysis," Energy Economics, Elsevier, vol. 85(C).
    15. Geoffrey Udoka Nnadiri & Anthony S. F. Chiu & Jose Bienvenido Manuel Biona & Neil Stephen Lopez, 2021. "Comparison of Driving Forces to Increasing Traffic Flow and Transport Emissions in Philippine Regions: A Spatial Decomposition Study," Sustainability, MDPI, vol. 13(11), pages 1-17, June.
    16. Yang Song & Kevin R. Gurney, 2020. "The Relationship between On-Road FFCO 2 Emissions and Socio-Economic/Urban Form Factors for Global Cities: Significance, Robustness and Implications," Sustainability, MDPI, vol. 12(15), pages 1-24, July.
    17. Lee, Zhi Hua & Sethupathi, Sumathi & Lee, Keat Teong & Bhatia, Subhash & Mohamed, Abdul Rahman, 2013. "An overview on global warming in Southeast Asia: CO2 emission status, efforts done, and barriers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 71-81.
    18. Fernando Ramos-Quintana & Efraín Tovar-Sánchez & Hugo Saldarriaga-Noreña & Héctor Sotelo-Nava & Juan Paulo Sánchez-Hernández & María-Luisa Castrejón-Godínez, 2019. "A CBR–AHP Hybrid Method to Support the Decision-Making Process in the Selection of Environmental Management Actions," Sustainability, MDPI, vol. 11(20), pages 1-30, October.
    19. Xue-Ting Jiang & Jie-Fang Dong & Xing-Min Wang & Rong-Rong Li, 2016. "The Multilevel Index Decomposition of Energy-Related Carbon Emission and Its Decoupling with Economic Growth in USA," Sustainability, MDPI, vol. 8(9), pages 1-16, August.
    20. Suhaiza Zailani & Mohammad Iranmanesh & Sunghyup Sean Hyun & Mohd Helmi Ali, 2019. "Applying the Theory of Consumption Values to Explain Drivers’ Willingness to Pay for Biofuels," Sustainability, MDPI, vol. 11(3), pages 1-13, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:19:p:3747-:d:272393. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.