IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i19p3705-d271603.html
   My bibliography  Save this article

Research on the Kinetics of Pyrolysis of Wood-Based Panels in Terms of Waste Management

Author

Listed:
  • Tomasz Jaworski

    (Department of Technologies and Installations for Waste Management, Silesian University of Technology, 44-100 Gliwice, Poland)

  • Małgorzata Kajda-Szcześniak

    (Department of Technologies and Installations for Waste Management, Silesian University of Technology, 44-100 Gliwice, Poland)

Abstract

Currently, there is a lot of interest in implementing the idea of a circular economy along with searching for optimal methods of waste management in terms of raw materials and energy. Waste wood-based floor panels are part of this discussion with regard to its management. The interest in this waste results from statistics and the prediction of its future quantities on the waste market. The separation and testing of individual layers of the waste floor panel was undertaken to answer the following question: Is it reasonable to mechanically separate the contaminated upper panel layer from the remaining part (which is suitable for material recycling) and subject it to thermal transformation methods? Thermogravimetric studies did not confirm the rationale of mechanical separation of layers for further management. Therefore, the use of pyrolysis was proposed as an alternative by showing the advantages of this process in the thermal transformation of the tested waste. The analyzed kinetics of this process included: mass loss, the influence of heating rate on the decomposition process, the impact of volatile parts in the substrate on the rate of mass loss, and the share of coke residue. Empirical formulas of the tested substrates in the molecular formula C–H–O–N (carbon-hydrogen-oxygen-nitrogen) were also proposed to assess its energy usefulness by entering the analyzed waste into a Van Krevelen diagram.

Suggested Citation

  • Tomasz Jaworski & Małgorzata Kajda-Szcześniak, 2019. "Research on the Kinetics of Pyrolysis of Wood-Based Panels in Terms of Waste Management," Energies, MDPI, vol. 12(19), pages 1-13, September.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:19:p:3705-:d:271603
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/19/3705/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/19/3705/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bridgwater, A. V. & Peacocke, G. V. C., 2000. "Fast pyrolysis processes for biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 4(1), pages 1-73, March.
    2. Mateusz Lewandowski, 2016. "Designing the Business Models for Circular Economy—Towards the Conceptual Framework," Sustainability, MDPI, vol. 8(1), pages 1-28, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pina Puntillo, 2023. "Circular economy business models: Towards achieving sustainable development goals in the waste management sector—Empirical evidence and theoretical implications," Corporate Social Responsibility and Environmental Management, John Wiley & Sons, vol. 30(2), pages 941-954, March.
    2. Mechthild Donner & Anne Verniquet & Jan Broeze & Katrin Kayser & Hugo de Vries, 2021. "Critical success and risk factors for circular business models valorising agricultural waste and by-products," Post-Print hal-03004851, HAL.
    3. Aleksey I. Shinkevich & Alsu R. Akhmetshina & Ruslan R. Khalilov, 2022. "Development of a Methodology for Forecasting the Sustainable Development of Industry in Russia Based on the Tools of Factor and Discriminant Analysis," Mathematics, MDPI, vol. 10(6), pages 1-16, March.
    4. Mushtaq, Faisal & Mat, Ramli & Ani, Farid Nasir, 2014. "A review on microwave assisted pyrolysis of coal and biomass for fuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 555-574.
    5. Jacopo Zotti & Andrea Bigano, 2019. "Write circular economy, read economy’s circularity. How to avoid going in circles," Economia Politica: Journal of Analytical and Institutional Economics, Springer;Fondazione Edison, vol. 36(2), pages 629-652, July.
    6. Wiebke Reim & David Sjödin & Vinit Parida, 2021. "Circular business model implementation: A capability development case study from the manufacturing industry," Business Strategy and the Environment, Wiley Blackwell, vol. 30(6), pages 2745-2757, September.
    7. Julian Lauten-Weiss & Stephan Ramesohl, 2021. "The Circular Business Framework for Building, Developing and Steering Businesses in the Circular Economy," Sustainability, MDPI, vol. 13(2), pages 1-14, January.
    8. Maurizio Massaro & Francesca Dal Mas & Charbel Jose Chiappetta Jabbour & Carlo Bagnoli, 2020. "Crypto‐economy and new sustainable business models: Reflections and projections using a case study analysis," Corporate Social Responsibility and Environmental Management, John Wiley & Sons, vol. 27(5), pages 2150-2160, September.
    9. Soria-Verdugo, Antonio & Rubio-Rubio, Mariano & Goos, Elke & Riedel, Uwe, 2020. "On the characteristic heating and pyrolysis time of thermally small biomass particles in a bubbling fluidized bed reactor," Renewable Energy, Elsevier, vol. 160(C), pages 312-322.
    10. Claudia Aparecida De Mattos & Thiago Lourenço Meira De Albuquerque, 2018. "Enabling Factors and Strategies for the Transition Toward a Circular Economy (CE)," Sustainability, MDPI, vol. 10(12), pages 1-18, December.
    11. María E. Aguilar-Fernández & José Ramon Otegi-Olaso, 2018. "Firm Size and the Business Model for Sustainable Innovation," Sustainability, MDPI, vol. 10(12), pages 1-27, December.
    12. Maria Rosa De Giacomo & Raimund Bleischwitz, 2020. "Business models for environmental sustainability: Contemporary shortcomings and some perspectives," Business Strategy and the Environment, Wiley Blackwell, vol. 29(8), pages 3352-3369, December.
    13. Rachel Greer & Timo Wirth & Derk Loorbach, 2023. "The Circular Decision-Making Tree: an Operational Framework," Circular Economy and Sustainability, Springer, vol. 3(2), pages 693-718, June.
    14. Kung, Chih-Chun & McCarl, Bruce A. & Cao, Xiaoyong, 2013. "Economics of pyrolysis-based energy production and biochar utilization: A case study in Taiwan," Energy Policy, Elsevier, vol. 60(C), pages 317-323.
    15. Nadia Preghenella & Cinzia Battistella, 2021. "Exploring business models for sustainability: A bibliographic investigation of the literature and future research directions," Business Strategy and the Environment, Wiley Blackwell, vol. 30(5), pages 2505-2522, July.
    16. Antonella Zucchella & Pietro Previtali & Roger Strange, 2022. "Proactive and reactive views in the transition towards circular business models. A grounded study in the plastic packaging industry," International Entrepreneurship and Management Journal, Springer, vol. 18(3), pages 1073-1102, September.
    17. Mirkouei, Amin & Haapala, Karl R. & Sessions, John & Murthy, Ganti S., 2017. "A review and future directions in techno-economic modeling and optimization of upstream forest biomass to bio-oil supply chains," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 15-35.
    18. Saja Kosanović & Mirjana Miletić & Ljubo Marković, 2021. "Energy Refurbishment of Family Houses in Serbia in Line with the Principles of Circular Economy," Sustainability, MDPI, vol. 13(10), pages 1-14, May.
    19. Fabio A. Madau & Brunella Arru & Roberto Furesi & Pietro Pulina, 2020. "Insect Farming for Feed and Food Production from a Circular Business Model Perspective," Sustainability, MDPI, vol. 12(13), pages 1-15, July.
    20. Marcos Ferasso & Tatiana Beliaeva & Sascha Kraus & Thomas Clauss & Domingo Ribeiro‐Soriano, 2020. "Circular economy business models: The state of research and avenues ahead," Business Strategy and the Environment, Wiley Blackwell, vol. 29(8), pages 3006-3024, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:19:p:3705-:d:271603. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.