IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i3p818-d203515.html
   My bibliography  Save this article

Oil and Gas Wells: Enhanced Wellbore Casing Integrity Management through Corrosion Rate Prediction Using an Augmented Intelligent Approach

Author

Listed:
  • Dhafer A. Al-Shehri

    (Department of Petroleum Engineering, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia)

Abstract

Wellbore integrity management for oil and gas wells plays a vital role throughout the typical lifespan of a well. Downhole casing leaks in oil- and gas-producing wells significantly affect their shallow water horizon, the environment, and fresh water resources. Additionally, downhole casing leaks may cause seepage of toxic gases to fresh water zones and the surface, through the casing annuli. Forecasting of such leaks and proactive measures of prevention will help eliminate their consequences and, in turn, better protect the environment. The objective of this study is to formulate an effective, robust, and accurate model for predicting the corrosion rate of metal casing string using artificial intelligence (AI) techniques. The input parameters used to train AI models include casing leaks, the percentage of metal loss, casing age, and average remaining barrier ratio (ARBR). The target parameter is the corrosion rate of the metal casing string. The dataset from which the AI models were trained was comprised of 250 data points collected from 218 wells in a giant carbonate reservoir that covered a wide range of practically reasonable values. Two AI tools were used: artificial neural networks (ANNs) and adaptive network-based fuzzy inference systems (ANFISs). A prediction comparison was made between these two tools. Based on the minimum average absolute percentage error (AAPE) and the highest coefficient of determination (R 2 ) between the measured and predicted corrosion rate values, the ANN model proposed here was determined to be best for predicting the corrosion rate. An ANN-based empirical model is also presented in this study. The proposed model is based on the associated weights and biases. After evaluating the new ANN equation using an unseen validation dataset, it was concluded that the ANN equation was able to make predictions with a significantly lower AAPE and higher R 2 . Use of the proposed new equation is very cost-effective in terms of reducing the number of sequential surveys and experiments conducted. The proposed equation can be utilized without an AI engine. The developed model and empirical correlation are very promising and can serve as a handy tool for corrosion engineers seeking to determine the corrosion rate without training an AI model.

Suggested Citation

  • Dhafer A. Al-Shehri, 2019. "Oil and Gas Wells: Enhanced Wellbore Casing Integrity Management through Corrosion Rate Prediction Using an Augmented Intelligent Approach," Sustainability, MDPI, vol. 11(3), pages 1-17, February.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:3:p:818-:d:203515
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/3/818/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/3/818/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ahmed Abdulhamid Mahmoud & Salaheldin Elkatatny & Weiqing Chen & Abdulazeez Abdulraheem, 2019. "Estimation of Oil Recovery Factor for Water Drive Sandy Reservoirs through Applications of Artificial Intelligence," Energies, MDPI, vol. 12(19), pages 1-13, September.
    2. Amjed Hassan & Salaheldin Elkatatny & Abdulazeez Abdulraheem, 2019. "Intelligent Prediction of Minimum Miscibility Pressure (MMP) During CO 2 Flooding Using Artificial Intelligence Techniques," Sustainability, MDPI, vol. 11(24), pages 1-16, December.
    3. Ahmed Abdulhamid Mahmoud & Salaheldin Elkatatny & Dhafer Al Shehri, 2020. "Application of Machine Learning in Evaluation of the Static Young’s Modulus for Sandstone Formations," Sustainability, MDPI, vol. 12(5), pages 1-16, March.
    4. Ahmed Abdulhamid Mahmoud & Salaheldin Elkatatny & Abdulwahab Z. Ali & Mohamed Abouelresh & Abdulazeez Abdulraheem, 2019. "Evaluation of the Total Organic Carbon (TOC) Using Different Artificial Intelligence Techniques," Sustainability, MDPI, vol. 11(20), pages 1-15, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:3:p:818-:d:203515. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.