IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i19p3633-d270083.html
   My bibliography  Save this article

A Novel Method for Comprehensive Quality and Reliability Optimization of High-Power DC Actuators for Renewable Energy Systems

Author

Listed:
  • Jie Deng

    (School of Electrical Engineering and Automation, Harbin Institute of Technology, Nan Gang District, Harbin 150001, China)

  • Hao Chen

    (School of Electrical Engineering and Automation, Harbin Institute of Technology, Nan Gang District, Harbin 150001, China)

  • Xuerong Ye

    (School of Electrical Engineering and Automation, Harbin Institute of Technology, Nan Gang District, Harbin 150001, China)

  • Huimin Liang

    (School of Electrical Engineering and Automation, Harbin Institute of Technology, Nan Gang District, Harbin 150001, China)

  • Guofu Zhaia

    (School of Electrical Engineering and Automation, Harbin Institute of Technology, Nan Gang District, Harbin 150001, China)

Abstract

To better qualify various uncertainties in design and manufacturing, as well as to understand the time-varying degradation process, a novel method of quality and reliable design and optimization for high-power DC actuators was developed in this study that considered relevant uncertainties in design, manufacturing parameters, and the degradation process. Orthogonal transformation was used to normalize heterogeneous uncertainties and the results were quantitatively described by the hyperellipsoid set model. On the basis of the uncertainty quantitative relationship, a fast substitution model was developed for high-power DC actuators with permanent magnet output characteristics of strong non-linearity and insufficient accuracy. The response surface method was used to derive the basis function, and the error between the practical measured values and the calculation values was modified by the radial basis function model. Afterwards, a life cycle global sensitivity analysis method was put forward to determine the design parameters when parameter degradation existed during the life cycle of high-power DC actuators. Then, an optimization model was established considering parameter uncertainties and reliability constraints, and the particle swarm algorithm was used to obtain the solution. Finally, the effectiveness of the proposed method was verified by a case study of high-power DC actuators in electric vehicles.

Suggested Citation

  • Jie Deng & Hao Chen & Xuerong Ye & Huimin Liang & Guofu Zhaia, 2019. "A Novel Method for Comprehensive Quality and Reliability Optimization of High-Power DC Actuators for Renewable Energy Systems," Energies, MDPI, vol. 12(19), pages 1-16, September.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:19:p:3633-:d:270083
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/19/3633/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/19/3633/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hui Hou & Mengya Xue & Yan Xu & Jinrui Tang & Guorong Zhu & Peng Liu & Tao Xu, 2018. "Multiobjective Joint Economic Dispatching of a Microgrid with Multiple Distributed Generation," Energies, MDPI, vol. 11(12), pages 1-19, November.
    2. Jiawei Yao & Yongming Zhang & Zhe Yan & Li Li, 2018. "A Group Approach of Smart Hybrid Poles with Renewable Energy, Street Lighting and EV Charging Based on DC Micro-Grid," Energies, MDPI, vol. 11(12), pages 1-17, December.
    3. Kangda Chen & Fuquan Zhao & Han Hao & Zongwei Liu, 2018. "Synergistic Impacts of China’s Subsidy Policy and New Energy Vehicle Credit Regulation on the Technological Development of Battery Electric Vehicles," Energies, MDPI, vol. 11(11), pages 1-19, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jie Deng & Xiaohan Liu & Guofu Zhai, 2019. "Robust Design Optimization of Electromagnetic Actuators for Renewable Energy Systems Considering the Manufacturing Cost," Energies, MDPI, vol. 12(22), pages 1-18, November.
    2. Xinglong Liu & Fuquan Zhao & Han Hao & Kangda Chen & Zongwei Liu & Hassan Babiker & Amer Ahmad Amer, 2020. "From NEDC to WLTP: Effect on the Energy Consumption, NEV Credits, and Subsidies Policies of PHEV in the Chinese Market," Sustainability, MDPI, vol. 12(14), pages 1-19, July.
    3. Alya AlHammadi & Nasser Al-Saif & Ameena Saad Al-Sumaiti & Mousa Marzband & Tareefa Alsumaiti & Ehsan Heydarian-Forushani, 2022. "Techno-Economic Analysis of Hybrid Renewable Energy Systems Designed for Electric Vehicle Charging: A Case Study from the United Arab Emirates," Energies, MDPI, vol. 15(18), pages 1-20, September.
    4. Juan Zhang & Ziyue Wang & Huiju Zhao, 2020. "The Impact of Consumer Subsidy on Green Technology Innovations for Vehicles and Environmental Impact," IJERPH, MDPI, vol. 17(20), pages 1-24, October.
    5. Aqsa Naeem & Naveed Ul Hassan & Chau Yuen & S. M. Muyeen, 2019. "Maximizing the Economic Benefits of a Grid-Tied Microgrid Using Solar-Wind Complementarity," Energies, MDPI, vol. 12(3), pages 1-22, January.
    6. Ibrahim Alsaidan & Mohd Bilal & Muhannad Alaraj & Mohammad Rizwan & Fahad M. Almasoudi, 2023. "A Novel EA-Based Techno–Economic Analysis of Charging System for Electric Vehicles: A Case Study of Qassim Region, Saudi Arabia," Mathematics, MDPI, vol. 11(9), pages 1-31, April.
    7. Fuquan Zhao & Kangda Chen & Han Hao & Zongwei Liu, 2020. "Challenges, Potential and Opportunities for Internal Combustion Engines in China," Sustainability, MDPI, vol. 12(12), pages 1-15, June.
    8. Ziyue Wang & Juan Zhang & Huiju Zhao, 2020. "The Selection of Green Technology Innovations under Dual-Credit Policy," Sustainability, MDPI, vol. 12(16), pages 1-22, August.
    9. Zongwei Liu & Xinglong Liu & Han Hao & Fuquan Zhao & Amer Ahmad Amer & Hassan Babiker, 2020. "Research on the Critical Issues for Power Battery Reusing of New Energy Vehicles in China," Energies, MDPI, vol. 13(8), pages 1-19, April.
    10. Sadeghian, Omid & Mohammadi-Ivatloo, Behnam & Oshnoei, Arman & Aghaei, Jamshid, 2024. "Unveiling the potential of renewable energy and battery utilization in real-world public lighting systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    11. Mu Li & Yingqi Liu & Weizhong Yue, 2022. "Evolutionary Game of Actors in China’s Electric Vehicle Charging Infrastructure Industry," Energies, MDPI, vol. 15(23), pages 1-20, November.
    12. Agustín Castillo-Martínez & Antonio Peña-García, 2021. "Influence of Groves on Daylight Conditions and Visual Performance of Users of Urban Civil Infrastructures," Sustainability, MDPI, vol. 13(22), pages 1-9, November.
    13. Cailou Jiang & Ying Zhang & Qun Zhao & Chong Wu, 2020. "The Impact of Purchase Subsidy on Enterprises’ R&D Efforts: Evidence from China’s New Energy Vehicle Industry," Sustainability, MDPI, vol. 12(3), pages 1-10, February.
    14. Zhao, Yuntong & Jian, Zhaoquan & Du, Yushen, 2024. "How can China's subsidy promote the transition to electric vehicles?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    15. Yue Cao & Tao Li & Tianyu He & Yuwei Wei & Ming Li & Fengqi Si, 2022. "Multiobjective Load Dispatch for Coal-Fired Power Plants under Renewable-Energy Accommodation Based on a Nondominated-Sorting Grey Wolf Optimizer Algorithm," Energies, MDPI, vol. 15(8), pages 1-19, April.
    16. Yongming Zhang & Zhe Yan & Feng Yuan & Jiawei Yao & Bao Ding, 2018. "A Novel Reconstruction Approach to Elevator Energy Conservation Based on a DC Micro-Grid in High-Rise Buildings," Energies, MDPI, vol. 12(1), pages 1-17, December.
    17. Thanapong Champahom & Chamroeun Se & Wimon Laphrom & Sajjakaj Jomnonkwao & Ampol Karoonsoontawong & Vatanavongs Ratanavaraha, 2024. "Modeling User Intentions for Electric Vehicle Adoption in Thailand: Incorporating Multilayer Preference Heterogeneity," Logistics, MDPI, vol. 8(3), pages 1-21, August.
    18. Lian Ding & Xiaodong Zhu, 2023. "The Impact of the Dual-Credit Policy on Production and Cooperative R&D in the Automotive Supply Chain," Sustainability, MDPI, vol. 15(2), pages 1-18, January.
    19. Baodi Zhang & Fuyuan Yang & Lan Teng & Minggao Ouyang & Kunfang Guo & Weifeng Li & Jiuyu Du, 2019. "Comparative Analysis of Technical Route and Market Development for Light-Duty PHEV in China and the US," Energies, MDPI, vol. 12(19), pages 1-23, September.
    20. Hou, Hui & Xue, Mengya & Xu, Yan & Xiao, Zhenfeng & Deng, Xiangtian & Xu, Tao & Liu, Peng & Cui, Rongjian, 2020. "Multi-objective economic dispatch of a microgrid considering electric vehicle and transferable load," Applied Energy, Elsevier, vol. 262(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:19:p:3633-:d:270083. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.