IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i11p3008-d179981.html
   My bibliography  Save this article

DC-link Ripple Reduction in a DPWM-Based Two-Level VSI

Author

Listed:
  • Anatolii Tcai

    (Chair of Power Electronics, Christian-Albrechts-Universität zu Kiel, 2, Kaiserstr, 24143 Kiel, Germany)

  • Ibrahim Mohd Alsofyani

    (Department of Electrical and Computer Engineering, Ajou University, 206, World cup-ro, Yeongtong-gu Suwon 16499, Korea)

  • In-Yong Seo

    (KEPCO Research Institute (KEPRI), 55, Jeollyeok-ro, Naju-si, Jeollanam-do 58322, Korea)

  • Kyo-Beum Lee

    (Department of Electrical and Computer Engineering, Ajou University, 206, World cup-ro, Yeongtong-gu Suwon 16499, Korea)

Abstract

This paper proposes a new method to reduce the ripple current of the DC-link capacitor in a two-level voltage source inverter (VSI), with a discontinuous pulse-width modulation (DPWM). In real applications, a capacitor block is very bulky, due to the parallel connection of several capacitors that share the value of the ripple current. Hence, it contributes significantly to the volume and weight of the whole system. Conventional DPWM is used to minimize the amount of switching for the power transistors, therefore, reducing stress and power loss. This leads to increased efficiency and reliability of the system. Nevertheless, the reduction of the DC link ripple current is still not optimal. Therefore, the proposed method introduces a PWM phase-shift technique to provide further reduction of the DC-link ripple current in a DPWM-based VSI. The efficacy of the proposed method is confirmed by simulation and experimental results.

Suggested Citation

  • Anatolii Tcai & Ibrahim Mohd Alsofyani & In-Yong Seo & Kyo-Beum Lee, 2018. "DC-link Ripple Reduction in a DPWM-Based Two-Level VSI," Energies, MDPI, vol. 11(11), pages 1-16, November.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:11:p:3008-:d:179981
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/11/3008/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/11/3008/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xuefeng Jin & Jiahao Liu & Wei Chen & Tingna Shi, 2023. "Optimized Synchronous Pulse Width Modulation Strategy Based on Discontinuous Carriers," Energies, MDPI, vol. 16(5), pages 1-16, March.
    2. Ibrahim Mohd Alsofyani & Kyo-Beum Lee, 2019. "Improved Deadbeat FC-MPC Based on the Discrete Space Vector Modulation Method with Efficient Computation for a Grid-Connected Three-Level Inverter System," Energies, MDPI, vol. 12(16), pages 1-18, August.
    3. Silpa Baburajan & Haoran Wang & Dinesh Kumar & Qian Wang & Frede Blaabjerg, 2021. "DC-Link Current Harmonic Mitigation via Phase-Shifting of Carrier Waves in Paralleled Inverter Systems," Energies, MDPI, vol. 14(14), pages 1-17, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:11:p:3008-:d:179981. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.