IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i15p2917-d252709.html
   My bibliography  Save this article

Axial Thrust, Disk Frictional Losses, and Heat Transfer in a Gas Turbine Disk Cavity

Author

Listed:
  • Bo Hu

    (Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China
    Department of Mechanical Engineering, University of Duisburg-Essen, 47057 Duisburg, Germany)

  • Xuesong Li

    (Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China)

  • Yanxia Fu

    (School of Energy and Power Engineering, Jiangsu University, Zhenjiang 212013, China)

  • Chunwei Gu

    (Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China)

  • Xiaodong Ren

    (Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China)

  • Jiaxing Lu

    (Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China
    Key Laboratory of Fluid and Power Machinery, Xihua University, Ministry of Education, Chengdu 610039, China)

Abstract

The gas turbine is a kind of high-power and high-performance energy machine. Currently, it is a hot issue to improve the efficiency of the gas turbines by reducing the amount of secondary air used in the disk cavity. The precondition is to understand the effects of the through-flow rate on the axial thrust, the disk frictional losses, and the characteristics of heat transfer under various experimental conditions. In this paper, experiments are conducted to analyze the characteristics of flow and heat transfer. To ensure the safe operation of the gas turbine, the pressure distribution and the axial thrust are measured for various experimental conditions. The axial thrust coefficient is found to decrease as the rotational speed and the through-flow rate increases. By torque measurements, the amounts of the moment coefficient drop as the rotational speed increases while increase with through-flow rate. In order to better analyze the temperature field within the cavity, both the local and the average Nusselt number are investigated with the help of thermochromic liquid crystal technique. Four correlations for the local Nusselt number are determined according to the amounts of a through-flow coefficient. The results in this study can help the designers to better design the secondary air system in a gas turbine.

Suggested Citation

  • Bo Hu & Xuesong Li & Yanxia Fu & Chunwei Gu & Xiaodong Ren & Jiaxing Lu, 2019. "Axial Thrust, Disk Frictional Losses, and Heat Transfer in a Gas Turbine Disk Cavity," Energies, MDPI, vol. 12(15), pages 1-15, July.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:15:p:2917-:d:252709
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/15/2917/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/15/2917/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang, Chuan & Shi, Weidong & Wang, Xikun & Jiang, Xiaoping & Yang, Yang & Li, Wei & Zhou, Ling, 2017. "Optimal design of multistage centrifugal pump based on the combined energy loss model and computational fluid dynamics," Applied Energy, Elsevier, vol. 187(C), pages 10-26.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jia Li & Xin Wang & Yue Wang & Wancheng Wang & Baibing Chen & Xiaolong Chen, 2020. "Effects of a Combination Impeller on the Flow Field and External Performance of an Aero-Fuel Centrifugal Pump," Energies, MDPI, vol. 13(4), pages 1-16, February.
    2. Ping, Xu & Yang, Fubin & Zhang, Hongguang & Xing, Chengda & Zhang, Wujie & Wang, Yan & Yao, Baofeng, 2023. "Dynamic response assessment and multi-objective optimization of organic Rankine cycle (ORC) under vehicle driving cycle conditions," Energy, Elsevier, vol. 263(PA).
    3. Federico Fontana & Massimo Masi, 2023. "A Hybrid Experimental-Numerical Method to Support the Design of Multistage Pumps," Energies, MDPI, vol. 16(12), pages 1-20, June.
    4. Torregrossa, Dario & Hansen, Joachim & Hernández-Sancho, Francesc & Cornelissen, Alex & Schutz, Georges & Leopold, Ulrich, 2017. "A data-driven methodology to support pump performance analysis and energy efficiency optimization in Waste Water Treatment Plants," Applied Energy, Elsevier, vol. 208(C), pages 1430-1440.
    5. Sonawat, Arihant & Kim, Sung & Ma, Sang-Bum & Kim, Seung-Jun & Lee, Ju Beak & Yu, Myo Suk & Kim, Jin-Hyuk, 2022. "Investigation of unsteady pressure fluctuations and methods for its suppression for a double suction centrifugal pump," Energy, Elsevier, vol. 252(C).
    6. Zhou, Ling & Hang, Jianwei & Bai, Ling & Krzemianowski, Zbigniew & El-Emam, Mahmoud A. & Yasser, Eman & Agarwal, Ramesh, 2022. "Application of entropy production theory for energy losses and other investigation in pumps and turbines: A review," Applied Energy, Elsevier, vol. 318(C).
    7. Wang, Zhiyuan & Qian, Zhongdong & Lu, Jie & Wu, Pengfei, 2019. "Effects of flow rate and rotational speed on pressure fluctuations in a double-suction centrifugal pump," Energy, Elsevier, vol. 170(C), pages 212-227.
    8. Yuquan Zhang & Yanhe Xu & Yuan Zheng & E. Fernandez-Rodriguez & Aoran Sun & Chunxia Yang & Jue Wang, 2019. "Multiobjective Optimization Design and Experimental Investigation on the Axial Flow Pump with Orthogonal Test Approach," Complexity, Hindawi, vol. 2019, pages 1-14, December.
    9. Abdelilah Hilali & Najib El Ouanjli & Said Mahfoud & Ameena Saad Al-Sumaiti & Mahmoud A. Mossa, 2022. "Optimization of a Solar Water Pumping System in Varying Weather Conditions by a New Hybrid Method Based on Fuzzy Logic and Incremental Conductance," Energies, MDPI, vol. 15(22), pages 1-21, November.
    10. Chen, Weisheng & Li, Yaojun & Liu, Zhuqing & Hong, Yiping, 2023. "Understanding of energy conversion and losses in a centrifugal pump impeller," Energy, Elsevier, vol. 263(PB).
    11. Wang, Tao & Kong, Fanyu & Xia, Bin & Bai, Yuxing & Wang, Chuan, 2017. "The method for determining blade inlet angle of special impeller using in turbine mode of centrifugal pump as turbine," Renewable Energy, Elsevier, vol. 109(C), pages 518-528.
    12. Lijian Shi & Jun Zhu & Fangping Tang & Chuan Wang, 2020. "Multi-Disciplinary Optimization Design of Axial-Flow Pump Impellers Based on the Approximation Model," Energies, MDPI, vol. 13(4), pages 1-19, February.
    13. Ping, Xu & Yang, Fubin & Zhang, Hongguang & Xing, Chengda & Yang, Anren & Yan, Yinlian & Pan, Yachao & Wang, Yan, 2023. "Ensemble of self-organizing adaptive maps and dynamic multi-objective optimization for organic Rankine cycle (ORC) under transportation and driving environment," Energy, Elsevier, vol. 275(C).
    14. Wang, Tao & Wang, Chuan & Kong, Fanyu & Gou, Qiuqin & Yang, Sunsheng, 2017. "Theoretical, experimental, and numerical study of special impeller used in turbine mode of centrifugal pump as turbine," Energy, Elsevier, vol. 130(C), pages 473-485.
    15. Shi, Lijian & Yuan, Yao & Jiao, Haifeng & Tang, Fangping & Cheng, Li & Yang, Fan & Jin, Yan & Zhu, Jun, 2021. "Numerical investigation and experiment on pressure pulsation characteristics in a full tubular pump," Renewable Energy, Elsevier, vol. 163(C), pages 987-1000.
    16. Juan Cristobal Alcaraz Tapia & Carlos E. Castañeda & Héctor Vargas-Rodríguez, 2021. "Port-Hamiltonian Mathematical Model of a Fluid Ring Attitude System," Energies, MDPI, vol. 14(21), pages 1-19, October.
    17. Li, Xiaojun & Chen, Bo & Luo, Xianwu & Zhu, Zuchao, 2020. "Effects of flow pattern on hydraulic performance and energy conversion characterisation in a centrifugal pump," Renewable Energy, Elsevier, vol. 151(C), pages 475-487.
    18. Hongliang Wang & Bing Long & Chuan Wang & Chen Han & Linjian Li, 2020. "Effects of the Impeller Blade with a Slot Structure on the Centrifugal Pump Performance," Energies, MDPI, vol. 13(7), pages 1-17, April.
    19. Zhang, Di & Jiao, Weixuan & Cheng, Li & Xia, Chenzhi & Zhang, Bowen & Luo, Can & Wang, Chuan, 2021. "Experimental study on the evolution process of the roof-attached vortex of the closed sump," Renewable Energy, Elsevier, vol. 164(C), pages 1029-1038.
    20. Song, Xijie & Liu, Chao, 2021. "Experimental study of the floor-attached vortices in pump sump using V3V," Renewable Energy, Elsevier, vol. 164(C), pages 752-766.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:15:p:2917-:d:252709. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.