IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i15p2846-d251132.html
   My bibliography  Save this article

An Automatic Classification Method of Well Testing Plot Based on Convolutional Neural Network (CNN)

Author

Listed:
  • Hongyang Chu

    (College of Petroleum Engineering, China University of Petroleum, Beijing 102249, China
    State Key Laboratory of Petroleum Resources and Engineering, Beijing 102249, China
    These authors contributed equally to this work.)

  • Xinwei Liao

    (College of Petroleum Engineering, China University of Petroleum, Beijing 102249, China
    State Key Laboratory of Petroleum Resources and Engineering, Beijing 102249, China)

  • Peng Dong

    (College of Petroleum Engineering, China University of Petroleum, Beijing 102249, China
    State Key Laboratory of Petroleum Resources and Engineering, Beijing 102249, China
    These authors contributed equally to this work.)

  • Zhiming Chen

    (College of Petroleum Engineering, China University of Petroleum, Beijing 102249, China
    State Key Laboratory of Petroleum Resources and Engineering, Beijing 102249, China)

  • Xiaoliang Zhao

    (College of Petroleum Engineering, China University of Petroleum, Beijing 102249, China
    State Key Laboratory of Petroleum Resources and Engineering, Beijing 102249, China)

  • Jiandong Zou

    (College of Petroleum Engineering, China University of Petroleum, Beijing 102249, China
    State Key Laboratory of Petroleum Resources and Engineering, Beijing 102249, China)

Abstract

The precondition of well testing interpretation is to determine the appropriate well testing model. In numerous attempts in the past, automatic classification and identification of well testing plots have been limited to fully connected neural networks (FCNN). Compared with FCNN, the convolutional neural network (CNN) has a better performance in the domain of image recognition. Utilizing the newly proposed CNN, we develop a new automatic identification approach to evaluate the type of well testing curves. The field data in tight reservoirs such as the Ordos Basin exhibit various well test models. With those models, the corresponding well test curves are chosen as training samples. One-hot encoding, Xavier normal initialization, regularization technique, and Adam algorithm are combined to optimize the established model. The evaluation results show that the CNN has a better result when the ReLU function is used. For the learning rate and dropout rate, the optimized values respectively are 0.005 and 0.4. Meanwhile, when the number of training samples was greater than 2000, the performance of the established CNN tended to be stable. Compared with the FCNN of similar structure, the CNN is more suitable for classification of well testing plots. What is more, the practical application shows that the CNN can successfully classify 21 of the 25 cases.

Suggested Citation

  • Hongyang Chu & Xinwei Liao & Peng Dong & Zhiming Chen & Xiaoliang Zhao & Jiandong Zou, 2019. "An Automatic Classification Method of Well Testing Plot Based on Convolutional Neural Network (CNN)," Energies, MDPI, vol. 12(15), pages 1-27, July.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:15:p:2846-:d:251132
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/15/2846/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/15/2846/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Akbilgic, Oguz & Zhu, Da & Gates, Ian D. & Bergerson, Joule A., 2015. "Prediction of steam-assisted gravity drainage steam to oil ratio from reservoir characteristics," Energy, Elsevier, vol. 93(P2), pages 1663-1670.
    2. Andrea Saltelli, 2002. "Sensitivity Analysis for Importance Assessment," Risk Analysis, John Wiley & Sons, vol. 22(3), pages 579-590, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Reza Rezaee, 2022. "Editorial on Special Issues of Development of Unconventional Reservoirs," Energies, MDPI, vol. 15(7), pages 1-9, April.
    2. Hai Wang & Shengnan Chen, 2023. "Insights into the Application of Machine Learning in Reservoir Engineering: Current Developments and Future Trends," Energies, MDPI, vol. 16(3), pages 1-11, January.
    3. Zehou Xiang & Kesai Li & Hucheng Deng & Yan Liu & Jianhua He & Xiaoju Zhang & Xianhong He, 2021. "Research on Test and Logging Data Quality Classification for Gas–Water Identification," Energies, MDPI, vol. 14(21), pages 1-18, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Makam, Vaishno Devi & Millossovich, Pietro & Tsanakas, Andreas, 2021. "Sensitivity analysis with χ2-divergences," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 372-383.
    2. S. Cucurachi & E. Borgonovo & R. Heijungs, 2016. "A Protocol for the Global Sensitivity Analysis of Impact Assessment Models in Life Cycle Assessment," Risk Analysis, John Wiley & Sons, vol. 36(2), pages 357-377, February.
    3. Marco Percoco, 2006. "A Note on the Inoperability Input‐Output Model," Risk Analysis, John Wiley & Sons, vol. 26(3), pages 589-594, June.
    4. Wenbin Ruan & Zhenzhou Lu & Longfei Tian, 2013. "A modified variance-based importance measure and its solution by state dependent parameter," Journal of Risk and Reliability, , vol. 227(1), pages 3-15, February.
    5. Kunz, Nathan & Chesney, Thomas & Trautrims, Alexander & Gold, Stefan, 2023. "Adoption and transferability of joint interventions to fight modern slavery in food supply chains," International Journal of Production Economics, Elsevier, vol. 258(C).
    6. Yun, Wanying & Lu, Zhenzhou & Feng, Kaixuan & Li, Luyi, 2019. "An elaborate algorithm for analyzing the Borgonovo moment-independent sensitivity by replacing the probability density function estimation with the probability estimation," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 99-108.
    7. Gonnet, Gaston H. & Stewart, John & Lafleur, Joseph & Keith, Stephen & McLellan, Mark & Jiang-Gorsline, David & Snider, Tim, 2021. "Analysis of feature influence on Covid-19 Death Rate Per Country Using a Novel Orthogonalization Technique," MetaArXiv 4kw2n, Center for Open Science.
    8. Abdur Rahim Hamidi & Jiangwei Wang & Shiyao Guo & Zhongping Zeng, 2020. "Flood vulnerability assessment using MOVE framework: a case study of the northern part of district Peshawar, Pakistan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 101(2), pages 385-408, March.
    9. Zhang, Lisong & Li, Jing & Sun, Luning & Yang, Feiyue, 2021. "An influence mechanism of shale barrier on heavy oil recovery using SAGD based on theoretical and numerical analysis," Energy, Elsevier, vol. 216(C).
    10. Kamoonpuri, Sana Zehra & Sengar, Anita, 2023. "Hi, May AI help you? An analysis of the barriers impeding the implementation and use of artificial intelligence-enabled virtual assistants in retail," Journal of Retailing and Consumer Services, Elsevier, vol. 72(C).
    11. Wenbin Ruan & Zhenzhou Lu & Pengfei Wei, 2013. "Estimation of conditional moment by moving least squares and its application for importance analysis," Journal of Risk and Reliability, , vol. 227(6), pages 641-650, December.
    12. Pesenti, Silvana M. & Millossovich, Pietro & Tsanakas, Andreas, 2019. "Reverse sensitivity testing: What does it take to break the model?," European Journal of Operational Research, Elsevier, vol. 274(2), pages 654-670.
    13. Wang, Hai & Wang, Haiying & Zhu, Tong & Deng, Wanli, 2017. "A novel model for steam transportation considering drainage loss in pipeline networks," Applied Energy, Elsevier, vol. 188(C), pages 178-189.
    14. Li, Haihe & Wang, Pan & Huang, Xiaoyu & Zhang, Zheng & Zhou, Changcong & Yue, Zhufeng, 2021. "Vine copula-based parametric sensitivity analysis of failure probability-based importance measure in the presence of multidimensional dependencies," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    15. Emanuele Borgonovo, 2006. "Measuring Uncertainty Importance: Investigation and Comparison of Alternative Approaches," Risk Analysis, John Wiley & Sons, vol. 26(5), pages 1349-1361, October.
    16. Jung, WoongHee & Taflanidis, Alexandros A., 2023. "Efficient global sensitivity analysis for high-dimensional outputs combining data-driven probability models and dimensionality reduction," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    17. C. L. Smith & E. Borgonovo, 2007. "Decision Making During Nuclear Power Plant Incidents—A New Approach to the Evaluation of Precursor Events," Risk Analysis, John Wiley & Sons, vol. 27(4), pages 1027-1042, August.
    18. Paleari, Livia & Movedi, Ermes & Zoli, Michele & Burato, Andrea & Cecconi, Irene & Errahouly, Jabir & Pecollo, Eleonora & Sorvillo, Carla & Confalonieri, Roberto, 2021. "Sensitivity analysis using Morris: Just screening or an effective ranking method?," Ecological Modelling, Elsevier, vol. 455(C).
    19. Andrea Saltelli & Arnald Puy, 2023. "What can mathematical modelling contribute to a sociology of quantification?," Palgrave Communications, Palgrave Macmillan, vol. 10(1), pages 1-8, December.
    20. Viet Duong Nguyen & Chiara Gigliarano, 2024. "Weight optimization for composite indicators based on variable importance: an application to measuring well-being in European Regions," RIEDS - Rivista Italiana di Economia, Demografia e Statistica - The Italian Journal of Economic, Demographic and Statistical Studies, SIEDS Societa' Italiana di Economia Demografia e Statistica, vol. 78(1), pages 113-128, January-M.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:15:p:2846-:d:251132. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.