IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i14p2711-d248694.html
   My bibliography  Save this article

Characterization of the Performance of a Turbocharger Centrifugal Compressor by Component Loss Contributions

Author

Listed:
  • Nima Khoshkalam

    (Faculty of Mechanical & Energy Engineering, Shahid Beheshti University, Tehran 167651719, Iran
    Current address: School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran 1417614418, Iran.)

  • Mohammad Mojaddam

    (Faculty of Mechanical & Energy Engineering, Shahid Beheshti University, Tehran 167651719, Iran)

  • Keith R. Pullen

    (School of Mathematics, Computer Science and Engineering, City University of London, London EC1V 0HB, UK)

Abstract

The performance of an automotive turbocharger centrifugal compressor has been studied by developing a comprehensive one-dimensional (1D) code as verified through experimental results and a three-dimensional (3D) model. For 1D analysis, the fluid stream in compressor is modeled using governing gas dynamics equations and the loss mechanisms have been investigated and added to the numerical model. The objective is to develop and offer a 1D model, which considers all loss mechanisms, slip, blockage and also predicts the surge margin and choke conditions. The model captures all features from inlet duct through to volute discharge. Performance characteristics are obtained using preliminary geometry and the blade characteristics. A 3D numerical model was also created and a viscous solver used for investigating the compressor characteristics. The numerical model results show good agreement with experimental data through compressor pressure ratio and efficiency. The effect of the main compressor dimensions on compressor performance has been investigated for wide operating range and the portions of each loss mechanism in the impeller. Higher pressure ratio is achievable by increasing impeller blade height at outlet, impeller blade angle on inlet, diffuser outlet diameter and by decreasing impeller shroud diameter at inlet and blade angle at outlet. These changes may cause unfavorable consequences such as a lower surge margin or shorter operating range, which should be compromised with favorable changes. At lower rotational speeds, impeller skin friction mainly impacts the performance and at higher rotational speeds, impeller diffusion, blade loading and recirculation losses are more important. The results allow the share of each loss mechanism to be quantified for different mass flow rates and rotational speed, shedding new light on which losses are most important for which conditions. For a turbocharger, which must operate over a wide range of conditions, these results bring new insight to engineers seeking to optimize the compressor design as part of an internal combustion engine system.

Suggested Citation

  • Nima Khoshkalam & Mohammad Mojaddam & Keith R. Pullen, 2019. "Characterization of the Performance of a Turbocharger Centrifugal Compressor by Component Loss Contributions," Energies, MDPI, vol. 12(14), pages 1-21, July.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:14:p:2711-:d:248694
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/14/2711/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/14/2711/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Moussavi, S. Abolfazl & Hajilouy Benisi, Ali & Durali, Mohammad, 2017. "Effect of splitter leading edge location on performance of an automotive turbocharger compressor," Energy, Elsevier, vol. 123(C), pages 511-520.
    2. Pei-Yuan Li & Chu-Wei Gu & Yin Song, 2015. "A New Optimization Method for Centrifugal Compressors Based on 1D Calculations and Analyses," Energies, MDPI, vol. 8(5), pages 1-18, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. He, Yang & Chen, Haisheng & Xu, Yujie & Deng, Jianqiang, 2018. "Compression performance optimization considering variable charge pressure in an adiabatic compressed air energy storage system," Energy, Elsevier, vol. 165(PB), pages 349-359.
    2. Marco Bicchi & Michele Marconcini & Ernani Fulvio Bellobuono & Elisabetta Belardini & Lorenzo Toni & Andrea Arnone, 2023. "Multi-Point Surrogate-Based Approach for Assessing Impacts of Geometric Variations on Centrifugal Compressor Performance," Energies, MDPI, vol. 16(4), pages 1-21, February.
    3. Tang, Xinzi & Wang, Zhe & Xiao, Peng & Peng, Ruitao & Liu, Xiongwei, 2020. "Uncertainty quantification based optimization of centrifugal compressor impeller for aerodynamic robustness under stochastic operational conditions," Energy, Elsevier, vol. 195(C).
    4. Omer Faruk Atac & Jeong-Eui Yun & Taehyun Noh, 2018. "Aerodynamic Design Optimization of a Micro Radial Compressor of a Turbocharger," Energies, MDPI, vol. 11(7), pages 1-18, July.
    5. Ekradi, Khalil & Madadi, Ali, 2020. "Performance improvement of a transonic centrifugal compressor impeller with splitter blade by three-dimensional optimization," Energy, Elsevier, vol. 201(C).
    6. Meroni, Andrea & Zühlsdorf, Benjamin & Elmegaard, Brian & Haglind, Fredrik, 2018. "Design of centrifugal compressors for heat pump systems," Applied Energy, Elsevier, vol. 232(C), pages 139-156.
    7. Mohsen Ebrahimi & Qiangqiang Huang & Xiao He & Xinqian Zheng, 2017. "Effects of Variable Diffuser Vanes on Performance of a Centrifugal Compressor with Pressure Ratio of 8.0," Energies, MDPI, vol. 10(5), pages 1-15, May.
    8. Rong Huang & Jimin Ni & Houchuan Fan & Xiuyong Shi & Qiwei Wang, 2023. "Investigating a New Method-Based Internal Joint Operation Law for Optimizing the Performance of a Turbocharger Compressor," Sustainability, MDPI, vol. 15(2), pages 1-23, January.
    9. Nakhchi, M.E. & Naung, S. Win & Rahmati, M., 2022. "Influence of blade vibrations on aerodynamic performance of axial compressor in gas turbine: Direct numerical simulation," Energy, Elsevier, vol. 242(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:14:p:2711-:d:248694. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.