IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i12p2447-d242800.html
   My bibliography  Save this article

Combustion Studies of a Non-Road Diesel Engine with Several Alternative Liquid Fuels

Author

Listed:
  • Michaela Hissa

    (School of Technology and Innovations, University of Vaasa, P.O. Box 700, FI-65101 Vaasa, Finland)

  • Seppo Niemi

    (School of Technology and Innovations, University of Vaasa, P.O. Box 700, FI-65101 Vaasa, Finland)

  • Katriina Sirviö

    (School of Technology and Innovations, University of Vaasa, P.O. Box 700, FI-65101 Vaasa, Finland)

  • Antti Niemi

    (School of Technology and Innovations, University of Vaasa, P.O. Box 700, FI-65101 Vaasa, Finland)

  • Teemu Ovaska

    (School of Technology and Innovations, University of Vaasa, P.O. Box 700, FI-65101 Vaasa, Finland)

Abstract

Sustainable liquid fuels will be needed for decades to fulfil the world’s growing energy demands. Combustion systems must be able to operate with a variety of renewable and sustainable fuels. This study focused on how the use of various alternative fuels affects combustion, especially in-cylinder combustion. The study investigated light fuel oil (LFO) and six alternative liquid fuels in a high-speed, compression-ignition (CI) engine to understand their combustion properties. The fuels were LFO (baseline), marine gas oil (MGO), kerosene, rapeseed methyl ester (RME), renewable diesel (HVO), renewable wood-based naphtha and its blend with LFO. The heat release rate (HRR), mass fraction burned (MFB) and combustion duration (CD) were determined at an intermediate speed at three loads. The combustion parameters seemed to be very similar with all studied fuels. The HRR curve was slightly delayed with RME at the highest load. The combustion duration of neat naphtha decreased compared to LFO as the engine load was reduced. The MFB values of 50% and 90% occurred earlier with neat renewable naphtha than with other fuels. It was concluded that with the exception of renewable naphtha, all investigated alternative fuels can be used in the non-road engine without modifications.

Suggested Citation

  • Michaela Hissa & Seppo Niemi & Katriina Sirviö & Antti Niemi & Teemu Ovaska, 2019. "Combustion Studies of a Non-Road Diesel Engine with Several Alternative Liquid Fuels," Energies, MDPI, vol. 12(12), pages 1-15, June.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:12:p:2447-:d:242800
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/12/2447/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/12/2447/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bayındır, Hasan & Işık, Mehmet Zerrakki & Argunhan, Zeki & Yücel, Halit Lütfü & Aydın, Hüseyin, 2017. "Combustion, performance and emissions of a diesel power generator fueled with biodiesel-kerosene and biodiesel-kerosene-diesel blends," Energy, Elsevier, vol. 123(C), pages 241-251.
    2. Tira, H.S. & Herreros, J.M. & Tsolakis, A. & Wyszynski, M.L., 2012. "Characteristics of LPG-diesel dual fuelled engine operated with rapeseed methyl ester and gas-to-liquid diesel fuels," Energy, Elsevier, vol. 47(1), pages 620-629.
    3. Li, Bowen & Li, Yanfei & Liu, Haoye & Liu, Fang & Wang, Zhi & Wang, Jianxin, 2017. "Combustion and emission characteristics of diesel engine fueled with biodiesel/PODE blends," Applied Energy, Elsevier, vol. 206(C), pages 425-431.
    4. Shahabuddin, M. & Liaquat, A.M. & Masjuki, H.H. & Kalam, M.A. & Mofijur, M., 2013. "Ignition delay, combustion and emission characteristics of diesel engine fueled with biodiesel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 623-632.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hyun Min Baek & Hyung Min Lee, 2022. "Spray Behavior, Combustion, and Emission Characteristics of Jet Propellant-5 and Biodiesel Fuels with Multiple Split Injection Strategies," Energies, MDPI, vol. 15(7), pages 1-19, March.
    2. Hyungmin Lee, 2021. "Spray, Combustion, and Air Pollutant Characteristics of JP-5 for Naval Aircraft from Experimental Single-Cylinder CRDI Diesel Engine," Energies, MDPI, vol. 14(9), pages 1-12, April.
    3. Katriina Sirviö & Seppo Niemi & Sonja Heikkilä & Jukka Kiijärvi & Michaela Hissa & Erkki Hiltunen, 2019. "Feasibility of New Liquid Fuel Blends for Medium-Speed Engines," Energies, MDPI, vol. 12(14), pages 1-10, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Katriina Sirviö & Seppo Niemi & Sonja Heikkilä & Jukka Kiijärvi & Michaela Hissa & Erkki Hiltunen, 2019. "Feasibility of New Liquid Fuel Blends for Medium-Speed Engines," Energies, MDPI, vol. 12(14), pages 1-10, July.
    2. Çeli̇k, Mehmet & Bayindirli, Cihan, 2020. "Enhancement performance and exhaust emissions of rapeseed methyl ester by using n-hexadecane and n-hexane fuel additives," Energy, Elsevier, vol. 202(C).
    3. Tamilselvan, P. & Nallusamy, N. & Rajkumar, S., 2017. "A comprehensive review on performance, combustion and emission characteristics of biodiesel fuelled diesel engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1134-1159.
    4. Kim, Hyung Jun & Jo, Seongin & Lee, Jong-Tae & Park, Suhan, 2020. "Biodiesel fueled combustion performance and emission characteristics under various intake air temperature and injection timing conditions," Energy, Elsevier, vol. 206(C).
    5. Li, Yu & Li, Hailin & Guo, Hongsheng & Wang, Hu & Yao, Mingfa, 2018. "A numerical study on the chemical kinetics process during auto-ignition of n-heptane in a direct injection compression ignition engine," Applied Energy, Elsevier, vol. 212(C), pages 909-918.
    6. M. Mofijur & F. Kusumo & I. M. Rizwanul Fattah & H. M. Mahmudul & M. G. Rasul & A. H. Shamsuddin & T. M. I. Mahlia, 2020. "Resource Recovery from Waste Coffee Grounds Using Ultrasonic-Assisted Technology for Bioenergy Production," Energies, MDPI, vol. 13(7), pages 1-15, April.
    7. Md Modassir Khan & Arun Kumar Kadian & Rabindra Prasad Sharma & S M Mozammil Hasnain & Ahmed Mohamed & Adham E. Ragab & Ali Zare & Shatrudhan Pandey, 2023. "Emission Reduction and Performance Enhancement of CI Engine Propelled by Neem Biodiesel-Neem Oil-Decanol-Diesel Blends at High Injection Pressure," Sustainability, MDPI, vol. 15(11), pages 1-18, June.
    8. El-Shafay, A.S. & Ağbulut, Ümit & Attia, El-Awady & Touileb, Kamel Lounes & Gad, M.S., 2023. "Waste to energy: Production of poultry-based fat biodiesel and experimental assessment of its usability on engine behaviors," Energy, Elsevier, vol. 262(PB).
    9. Tolgahan Kaya & Osman Akın Kutlar & Ozgur Oguz Taskiran, 2018. "Evaluation of the Effects of Biodiesel on Emissions and Performance by Comparing the Results of the New European Drive Cycle and Worldwide Harmonized Light Vehicles Test Cycle," Energies, MDPI, vol. 11(10), pages 1-14, October.
    10. E, Jiaqiang & Pham, MinhHieu & Deng, Yuanwang & Nguyen, Tuannghia & Duy, VinhNguyen & Le, DucHieu & Zuo, Wei & Peng, Qingguo & Zhang, Zhiqing, 2018. "Effects of injection timing and injection pressure on performance and exhaust emissions of a common rail diesel engine fueled by various concentrations of fish-oil biodiesel blends," Energy, Elsevier, vol. 149(C), pages 979-989.
    11. Chen, Hao & Su, Xin & Li, Junhui & Zhong, Xianglin, 2019. "Effects of gasoline and polyoxymethylene dimethyl ethers blending in diesel on the combustion and emission of a common rail diesel engine," Energy, Elsevier, vol. 171(C), pages 981-999.
    12. Abdelaal, Mohsen M. & Rabee, Basem A. & Hegab, Abdelrahman H., 2013. "Effect of adding oxygen to the intake air on a dual-fuel engine performance, emissions, and knock tendency," Energy, Elsevier, vol. 61(C), pages 612-620.
    13. Chiong, Meng-Choung & Kang, Hooi-Siang & Shaharuddin, Nik Mohd Ridzuan & Mat, Shabudin & Quen, Lee Kee & Ten, Ki-Hong & Ong, Muk Chen, 2021. "Challenges and opportunities of marine propulsion with alternative fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    14. Muteeb Ul Haq & Ali Turab Jafry & Saad Ahmad & Taqi Ahmad Cheema & Munib Qasim Ansari & Naseem Abbas, 2022. "Recent Advances in Fuel Additives and Their Spray Characteristics for Diesel-Based Blends," Energies, MDPI, vol. 15(19), pages 1-30, October.
    15. Dong Lin Loo & Yew Heng Teoh & Heoy Geok How & Jun Sheng Teh & Liviu Catalin Andrei & Slađana Starčević & Farooq Sher, 2021. "Applications Characteristics of Different Biodiesel Blends in Modern Vehicles Engines: A Review," Sustainability, MDPI, vol. 13(17), pages 1-31, August.
    16. Renas Hasan Saeed Saeed & Youssef Kassem & Hüseyin Çamur, 2019. "Effect of Biodiesel Mixture Derived from Waste Frying-Corn, Frying-Canola-Corn and Canola-Corn Cooking Oils with Various ‎Ages on Physicochemical Properties," Energies, MDPI, vol. 12(19), pages 1-26, September.
    17. Bemani, Amin & Xiong, Qingang & Baghban, Alireza & Habibzadeh, Sajjad & Mohammadi, Amir H. & Doranehgard, Mohammad Hossein, 2020. "Modeling of cetane number of biodiesel from fatty acid methyl ester (FAME) information using GA-, PSO-, and HGAPSO- LSSVM models," Renewable Energy, Elsevier, vol. 150(C), pages 924-934.
    18. Mofijur, M. & Atabani, A.E. & Masjuki, H.H. & Kalam, M.A. & Masum, B.M., 2013. "A study on the effects of promising edible and non-edible biodiesel feedstocks on engine performance and emissions production: A comparative evaluation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 391-404.
    19. Giancarlo Chiatti & Ornella Chiavola & Fulvio Palmieri, 2019. "Impact on Combustion and Emissions of Jet Fuel as Additive in Diesel Engine Fueled with Blends of Petrol Diesel, Renewable Diesel and Waste Cooking Oil Biodiesel," Energies, MDPI, vol. 12(13), pages 1-14, June.
    20. Barik, Debabrata & Murugan, S., 2014. "Investigation on combustion performance and emission characteristics of a DI (direct injection) diesel engine fueled with biogas–diesel in dual fuel mode," Energy, Elsevier, vol. 72(C), pages 760-771.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:12:p:2447-:d:242800. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.