IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i12p2389-d241811.html
   My bibliography  Save this article

Luminaire Digital Design Flow with Multi-Domain Digital Twins of LEDs

Author

Listed:
  • Genevieve Martin

    (Signify, Hightech Campus 45, 5056AE Eindhoven, The Netherlands)

  • Christophe Marty

    (Ingelux, 69120 Vaulx en Velin, France)

  • Robin Bornoff

    (Mentor, a Siemens Business, 81 Bridge Rd, Molesey, East Molesey KT8 9HH, UK)

  • Andras Poppe

    (Department of Electron Devices, Budapest University of Technology and Economics; Magyar tudósok körútja 2, bldg. Q, 1117 Budapest, Hungary
    Mentor, a Siemens Business, Mechanical Analysis Division, Gábor Dénes utca 2, 1117 Budapest, Hungary)

  • Grigory Onushkin

    (Signify, Hightech Campus 45, 5056AE Eindhoven, The Netherlands)

  • Marta Rencz

    (Department of Electron Devices, Budapest University of Technology and Economics; Magyar tudósok körútja 2, bldg. Q, 1117 Budapest, Hungary
    Mentor, a Siemens Business, Mechanical Analysis Division, Gábor Dénes utca 2, 1117 Budapest, Hungary)

  • Joan Yu

    (Signify, Hightech Campus 45, 5056AE Eindhoven, The Netherlands)

Abstract

At present, when designing a Light Emitting Diode (LED) luminaire, different strategies of development are followed depending on the size of the company. Since on LED datasheets there is only limited information provided, companies designing LED luminaires spend a lot of effort gathering the required input of LED details to be able to design reliable products. Small and medium size enterprises (SMEs) do not have the bandwidth to gather such input and solely rely on empirical approaches leading to approximated luminaire designs, while larger companies use advanced hardware and software tools to characterize parts, design versions, and finally optimize all design steps. In both cases, considerable time and money is spent on prototyping, sampling, and laboratory testing. Digitalization of the complete product development (also known as Industry 4.0 approach) at all integration levels of the solid state lighting (SSL) supply chain would provide the remedy for these pains. The Delphi4LED European project aimed at developing multi-domain compact models of LED (for a consistent, combined description of electronic, thermal, and optical properties of LEDs) as digital twins of the physical products to support virtual prototyping during the design of luminaires. This paper provides an overview of the Delphi4LED approach aimed at supporting new, completely digital workflows both for SMEs and larger companies (Majors) along with some comparison with the traditional luminaire design. Two demonstration experiments are described: One to show the achievable benefits of the approach and another one to demonstrate the ease of use and ability to be accommodated in a larger scale product design for assessing design choices like e.g., number and type of LEDs versus electrical/thermal conditions and constraints, in a tool agnostic manner.

Suggested Citation

  • Genevieve Martin & Christophe Marty & Robin Bornoff & Andras Poppe & Grigory Onushkin & Marta Rencz & Joan Yu, 2019. "Luminaire Digital Design Flow with Multi-Domain Digital Twins of LEDs," Energies, MDPI, vol. 12(12), pages 1-28, June.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:12:p:2389-:d:241811
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/12/2389/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/12/2389/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Anton Alexeev & Grigory Onushkin & Jean-Paul Linnartz & Genevieve Martin, 2019. "Multiple Heat Source Thermal Modeling and Transient Analysis of LEDs," Energies, MDPI, vol. 12(10), pages 1-28, May.
    2. Robin Bornoff, 2019. "Extraction of Boundary Condition Independent Dynamic Compact Thermal Models of LEDs—A Delphi4LED Methodology," Energies, MDPI, vol. 12(9), pages 1-10, April.
    3. András Poppe & Gábor Farkas & Lajos Gaál & Gusztáv Hantos & János Hegedüs & Márta Rencz, 2019. "Multi-Domain Modelling of LEDs for Supporting Virtual Prototyping of Luminaires," Energies, MDPI, vol. 12(10), pages 1-32, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Krzysztof Skarżyński & Wojciech Żagan & Kamil Krajewski, 2021. "LED Luminaires: Many Chips—Many Photometric and Lighting Simulation Issues to Solve," Energies, MDPI, vol. 14(15), pages 1-17, July.
    2. Marcin Janicki & Przemysław Ptak & Tomasz Torzewicz & Krzysztof Górecki, 2023. "Experimental Determination of Thermal Couplings in Packages Containing Multiple LEDs," Energies, MDPI, vol. 16(4), pages 1-8, February.
    3. Marc van der Schans & Joan Yu & Genevieve Martin, 2020. "Digital Luminaire Design Using LED Digital Twins—Accuracy and Reduced Computation Time: A Delphi4LED Methodology," Energies, MDPI, vol. 13(18), pages 1-19, September.
    4. László Pohl & Gusztáv Hantos & János Hegedüs & Márton Németh & Zsolt Kohári & András Poppe, 2020. "Mixed Detailed and Compact Multi-Domain Modeling to Describe CoB LEDs," Energies, MDPI, vol. 13(16), pages 1-39, August.
    5. András Poppe & Gábor Farkas & Lajos Gaál & Gusztáv Hantos & János Hegedüs & Márta Rencz, 2019. "Multi-Domain Modelling of LEDs for Supporting Virtual Prototyping of Luminaires," Energies, MDPI, vol. 12(10), pages 1-32, May.
    6. Marcin Janicki & Przemysław Ptak & Tomasz Torzewicz & Krzysztof Górecki, 2020. "Compact Thermal Modeling of Modules Containing Multiple Power LEDs," Energies, MDPI, vol. 13(12), pages 1-9, June.
    7. János Hegedüs & Gusztáv Hantos & András Poppe, 2020. "Lifetime Modelling Issues of Power Light Emitting Diodes," Energies, MDPI, vol. 13(13), pages 1-30, July.
    8. Chen, Ziyue & Huang, Lizhen, 2021. "Digital twins for information-sharing in remanufacturing supply chain: A review," Energy, Elsevier, vol. 220(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. László Pohl & Gusztáv Hantos & János Hegedüs & Márton Németh & Zsolt Kohári & András Poppe, 2020. "Mixed Detailed and Compact Multi-Domain Modeling to Describe CoB LEDs," Energies, MDPI, vol. 13(16), pages 1-39, August.
    2. Marc van der Schans & Joan Yu & Genevieve Martin, 2020. "Digital Luminaire Design Using LED Digital Twins—Accuracy and Reduced Computation Time: A Delphi4LED Methodology," Energies, MDPI, vol. 13(18), pages 1-19, September.
    3. Marcin Janicki & Przemysław Ptak & Tomasz Torzewicz & Krzysztof Górecki, 2020. "Compact Thermal Modeling of Modules Containing Multiple Power LEDs," Energies, MDPI, vol. 13(12), pages 1-9, June.
    4. Krzysztof Górecki & Przemysław Ptak, 2021. "Compact Modelling of Electrical, Optical and Thermal Properties of Multi-Colour Power LEDs Operating on a Common PCB," Energies, MDPI, vol. 14(5), pages 1-21, February.
    5. András Poppe & Gábor Farkas & Lajos Gaál & Gusztáv Hantos & János Hegedüs & Márta Rencz, 2019. "Multi-Domain Modelling of LEDs for Supporting Virtual Prototyping of Luminaires," Energies, MDPI, vol. 12(10), pages 1-32, May.
    6. Krzysztof Dziarski & Arkadiusz Hulewicz & Piotr Kuwałek & Grzegorz Wiczyński, 2023. "Methods of Measurement of Die Temperature of Semiconductor Elements: A Review," Energies, MDPI, vol. 16(6), pages 1-25, March.
    7. Krzysztof Baran & Antoni Różowicz & Henryk Wachta & Sebastian Różowicz & Damian Mazur, 2019. "Thermal Analysis of the Factors Influencing Junction Temperature of LED Panel Sources," Energies, MDPI, vol. 12(20), pages 1-20, October.
    8. Hassan Khan & Adnan Khan & Maysaa Al-Qurashi & Rasool Shah & Dumitru Baleanu, 2020. "Modified Modelling for Heat Like Equations within Caputo Operator," Energies, MDPI, vol. 13(8), pages 1-14, April.
    9. János Hegedüs & Gusztáv Hantos & András Poppe, 2020. "Lifetime Modelling Issues of Power Light Emitting Diodes," Energies, MDPI, vol. 13(13), pages 1-30, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:12:p:2389-:d:241811. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.