IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i11p2159-d237509.html
   My bibliography  Save this article

Does Increasing Natural Gas Demand in the Power Sector Pose a Threat of Congestion to the German Gas Grid? A Model-Coupling Approach

Author

Listed:
  • Philipp Hauser

    (Chair of Energy Economics, Faculty of Economics and Business Management, Technische Universität Dresden, D-01062 Dresden, Germany)

  • Sina Heidari

    (Chair for Management Science and Energy Economics, University of Duisburg-Essen, D-45127 Essen, Germany)

  • Christoph Weber

    (Chair for Management Science and Energy Economics, University of Duisburg-Essen, D-45127 Essen, Germany)

  • Dominik Möst

    (Chair of Energy Economics, Faculty of Economics and Business Management, Technische Universität Dresden, D-01062 Dresden, Germany)

Abstract

This study aims to investigate the possible congestion in the German natural gas system, which may arise due to an increase in the gas consumption in the power sector in extreme weather events. For this purpose, we develop a two-stage approach to couple an electricity model and a natural gas network model. In this approach, we model the electricity system in the first stage to determine the gas demand in the power sector. We then use the calculated gas demand to model gas networks in the second stage, where we deploy a newly developed gas network model. As a case study, we primarily evaluate our methodological approach by re-simulating the cold weather event in 2012, which is seen as an extreme situation for the gas grids, challenging the security of supply. Accordingly, we use our coupled model to investigate potential congestion in the natural gas networks for the year 2030, using a scenario of a sustainable energy transition, where an increase in the gas consumption in the power industry is likely. Results for 2030 show a 51% increase in yearly gas demand in the power industry compared to 2012. Further, the simulation results show a gas supply interruption in two nodes in 2012. In 2030, the same nodes may face an (partial) interruption of gas supply in cold winter days such as the 6th of February 2012. In this day, the load shedding in the natural gas networks can increase up to 19 GWh th in 2030. We also argue that the interrupted electricity production, due to local gas interruptions, can easily be compensated by other power plants. However, these local gas interruptions may endanger the local heat production.

Suggested Citation

  • Philipp Hauser & Sina Heidari & Christoph Weber & Dominik Möst, 2019. "Does Increasing Natural Gas Demand in the Power Sector Pose a Threat of Congestion to the German Gas Grid? A Model-Coupling Approach," Energies, MDPI, vol. 12(11), pages 1-22, June.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:11:p:2159-:d:237509
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/11/2159/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/11/2159/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sovacool, Benjamin K. & Mukherjee, Ishani, 2011. "Conceptualizing and measuring energy security: A synthesized approach," Energy, Elsevier, vol. 36(8), pages 5343-5355.
    2. Hauser, Philipp & Heinrichs, Heidi U. & Gillessen, Bastian & Müller, Theresa, 2018. "Implications of diversification strategies in the European natural gas market for the German energy system," Energy, Elsevier, vol. 151(C), pages 442-454.
    3. Möst, Dominik & Perlwitz, Holger, 2009. "Prospects of gas supply until 2020 in Europe and its relevance for the power sector in the context of emission trading," Energy, Elsevier, vol. 34(10), pages 1510-1522.
    4. Biresselioglu, Mehmet Efe & Yelkenci, Tezer & Oz, Ibrahim Onur, 2015. "Investigating the natural gas supply security: A new perspective," Energy, Elsevier, vol. 80(C), pages 168-176.
    5. Hauser, Philipp, 2019. "A modelling approach for the German gas grid using highly resolved spatial, temporal and sectoral data (GAMAMOD-DE)," EconStor Preprints 197000, ZBW - Leibniz Information Centre for Economics.
    6. Deane, J.P. & Ó Ciaráin, M. & Ó Gallachóir, B.P., 2017. "An integrated gas and electricity model of the EU energy system to examine supply interruptions," Applied Energy, Elsevier, vol. 193(C), pages 479-490.
    7. Pambour, Kwabena Addo & Cakir Erdener, Burcin & Bolado-Lavin, Ricardo & Dijkema, Gerard P.J., 2017. "SAInt – A novel quasi-dynamic model for assessing security of supply in coupled gas and electricity transmission networks," Applied Energy, Elsevier, vol. 203(C), pages 829-857.
    8. Richter, Philipp M. & Holz, Franziska, 2015. "All quiet on the eastern front? Disruption scenarios of Russian natural gas supply to Europe," Energy Policy, Elsevier, vol. 80(C), pages 177-189.
    9. Cabalu, Helen, 2010. "Indicators of security of natural gas supply in Asia," Energy Policy, Elsevier, vol. 38(1), pages 218-225, January.
    10. Ameli, Hossein & Qadrdan, Meysam & Strbac, Goran, 2017. "Value of gas network infrastructure flexibility in supporting cost effective operation of power systems," Applied Energy, Elsevier, vol. 202(C), pages 571-580.
    11. Ang, B.W. & Choong, W.L. & Ng, T.S., 2015. "Energy security: Definitions, dimensions and indexes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1077-1093.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Çam , Eren & Lencz, Dominic, 2021. "Internal and external effects of pricing short-term gas transmission capacity via multipliers," EWI Working Papers 2021-4, Energiewirtschaftliches Institut an der Universitaet zu Koeln (EWI).
    2. Felten, Björn, 2020. "An integrated model of coupled heat and power sectors for large-scale energy system analyses," Applied Energy, Elsevier, vol. 266(C).
    3. Peter Lustenberger & Felix Schumacher & Matteo Spada & Peter Burgherr & Bozidar Stojadinovic, 2019. "Assessing the Performance of the European Natural Gas Network for Selected Supply Disruption Scenarios Using Open-Source Information," Energies, MDPI, vol. 12(24), pages 1-28, December.
    4. Paul Anton Verwiebe & Stephan Seim & Simon Burges & Lennart Schulz & Joachim Müller-Kirchenbauer, 2021. "Modeling Energy Demand—A Systematic Literature Review," Energies, MDPI, vol. 14(23), pages 1-58, November.
    5. Sina Heidari, 2020. "How Strategic Behavior of Natural Gas Exporters Can Affect the Sectors of Electricity, Heating, and Emission Trading during the European Energy Transition," Energies, MDPI, vol. 13(19), pages 1-20, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dubský, Zbyněk & Tichý, Lukáš & Pavliňák, Daniel, 2021. "A quantifiable approach to the selection of criteria and indexation for comparison of the gas pipeline projects leading to the EU: Diversification rationality against securitisation?," Energy, Elsevier, vol. 225(C).
    2. Ye, Ruike & Zhou, Yunheng & Chen, Jiawei & Tu, Kevin, 2021. "Natural gas security evaluation from a supply vs. demand perspective: A quantitative application of four As," Energy Policy, Elsevier, vol. 156(C).
    3. Erahman, Qodri Febrilian & Purwanto, Widodo Wahyu & Sudibandriyo, Mahmud & Hidayatno, Akhmad, 2016. "An assessment of Indonesia's energy security index and comparison with seventy countries," Energy, Elsevier, vol. 111(C), pages 364-376.
    4. Gillessen, B. & Heinrichs, H. & Hake, J.-F. & Allelein, H.-J., 2019. "Natural gas as a bridge to sustainability: Infrastructure expansion regarding energy security and system transition," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    5. Gong, Chengzhu & Gong, Nianjiao & Qi, Rui & Yu, Shiwei, 2020. "Assessment of natural gas supply security in Asia Pacific: Composite indicators with compromise Benefit-of-the-Doubt weights," Resources Policy, Elsevier, vol. 67(C).
    6. Shoki Kosai & Chia Kwang Tan & Eiji Yamasue, 2018. "Evaluating Power Reliability Dedicated for Sudden Disruptions: Its Application to Determine Capacity on the Basis of Energy Security," Sustainability, MDPI, vol. 10(6), pages 1-18, June.
    7. Dastan, Seyit Ali & Selcuk, Orhun, 2016. "Review of the security of supply in Turkish energy markets: Lessons from the winter shortages," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 958-971.
    8. Gasser, Patrick, 2020. "A review on energy security indices to compare country performances," Energy Policy, Elsevier, vol. 139(C).
    9. Hauser, Philipp, 2021. "Does ‘more’ equal ‘better’? – Analyzing the impact of diversification strategies on infrastructure in the European gas market," Energy Policy, Elsevier, vol. 153(C).
    10. Zhang, Long & Bai, Wuliyasu & Xiao, Huijuan & Ren, Jingzheng, 2021. "Measuring and improving regional energy security: A methodological framework based on both quantitative and qualitative analysis," Energy, Elsevier, vol. 227(C).
    11. Mišík, Matúš, 2016. "On the way towards the Energy Union: Position of Austria, the Czech Republic and Slovakia towards external energy security integration," Energy, Elsevier, vol. 111(C), pages 68-81.
    12. Honorata Nyga-Łukaszewska & Kentaka Aruga & Katarzyna Stala-Szlugaj, 2020. "Energy Security of Poland and Coal Supply: Price Analysis," Sustainability, MDPI, vol. 12(6), pages 1-18, March.
    13. Tete, Komlan H.S. & Soro, Y.M. & Sidibé, S.S. & Jones, Rory V., 2023. "Assessing energy security within the electricity sector in the West African economic and monetary union: Inter-country performances and trends analysis with policy implications," Energy Policy, Elsevier, vol. 173(C).
    14. Yassine Rqiq & Jesus Beyza & Jose M. Yusta & Ricardo Bolado-Lavin, 2020. "Assessing the Impact of Investments in Cross-Border Pipelines on the Security of Gas Supply in the EU," Energies, MDPI, vol. 13(11), pages 1-23, June.
    15. Mu Li & Li Li & Wadim Strielkowski, 2019. "The Impact of Urbanization and Industrialization on Energy Security: A Case Study of China," Energies, MDPI, vol. 12(11), pages 1-22, June.
    16. Tomasz Rokicki & Aleksandra Perkowska, 2021. "Diversity and Changes in the Energy Balance in EU Countries," Energies, MDPI, vol. 14(4), pages 1-19, February.
    17. Narula, Kapil & Reddy, B. Sudhakara, 2016. "A SES (sustainable energy security) index for developing countries," Energy, Elsevier, vol. 94(C), pages 326-343.
    18. Pin Li & Jinsuo Zhang, 2019. "Is China’s Energy Supply Sustainable? New Research Model Based on the Exponential Smoothing and GM(1,1) Methods," Energies, MDPI, vol. 12(2), pages 1-30, January.
    19. Kangyin Dong & Yalin Han & Yue Dou & Muhammad Shahbaz, 2022. "Moving toward carbon neutrality: Assessing natural gas import security and its impact on CO2 emissions," Sustainable Development, John Wiley & Sons, Ltd., vol. 30(4), pages 751-770, August.
    20. Evgeny Lisin & Wadim Strielkowski & Veronika Chernova & Alena Fomina, 2018. "Assessment of the Territorial Energy Security in the Context of Energy Systems Integration," Energies, MDPI, vol. 11(12), pages 1-14, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:11:p:2159-:d:237509. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.