IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i6p1594-d153121.html
   My bibliography  Save this article

Low-Frequency Oscillation Suppression of the Vehicle–Grid System in High-Speed Railways Based on H∞ Control

Author

Listed:
  • Zhaozhao Geng

    (School of Electrical Engineering, Southwest Jiaotong University, Chengdu 610031, China)

  • Zhigang Liu

    (School of Electrical Engineering, Southwest Jiaotong University, Chengdu 610031, China)

  • Xinxuan Hu

    (School of Electrical Engineering, Southwest Jiaotong University, Chengdu 610031, China)

  • Jing Liu

    (School of Electrical Engineering, Southwest Jiaotong University, Chengdu 610031, China)

Abstract

Recently, a traction blockade in the depots of numerous electric multiple units (EMUs) of high-speed railways has occured and resulted in some accidents in train operation. The traction blockade is caused by the low-frequency oscillation (LFO) of the vehicle–grid (EMUs–traction network) system. To suppress the LFO, a scheme of EMUs line-side converter based on the H∞ control is proposed in this paper. First, the mathematical model of the four-quadrant converter in EMUs is presented. Second, the state variables are determined and the weighting functions are selected. Then, an H∞ controller based on the dq coordinate is designed. Moreover, compared with the simulation results of traditional proportional integral (PI) control, auto-disturbance rejection control (ADRC) and multivariable control (MC) based on Matlab/Simulink and the RT-LAB platform, the simulation results of the proposed H∞ control confirm that the H∞ controller applied in EMUs of China Railway High-Speed 3 has better dynamic and static performances. Finally, a whole cascade system model of EMUs and a traction network is built, in which a reduced-order model of a traction network is adopted. The experimental results of multi-EMUs accessed in the traction network indicate that the H∞ controller has good suppression performance for the LFO of the vehicle–grid system. In addition, through the analysis of sensitivity of the H∞ controller and the traditional PI controller, it is indicated that the H∞ controller has better robustness.

Suggested Citation

  • Zhaozhao Geng & Zhigang Liu & Xinxuan Hu & Jing Liu, 2018. "Low-Frequency Oscillation Suppression of the Vehicle–Grid System in High-Speed Railways Based on H∞ Control," Energies, MDPI, vol. 11(6), pages 1-23, June.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:6:p:1594-:d:153121
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/6/1594/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/6/1594/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yingjie Wang & Jiashi Wang & Wei Zeng & Haiyuan Liu & Yushuo Chai, 2018. "H ∞ Robust Control of an LCL-Type Grid-Connected Inverter with Large-Scale Grid Impedance Perturbation," Energies, MDPI, vol. 11(1), pages 1-19, January.
    2. Wei Jin & Yongli Li & Guangyu Sun & Lizhi Bu, 2017. "H∞ Repetitive Control Based on Active Damping with Reduced Computation Delay for LCL-Type Grid-Connected Inverters," Energies, MDPI, vol. 10(5), pages 1-19, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. En-Chih Chang & Chun-An Cheng & Lung-Sheng Yang, 2019. "Nonsingular Terminal Sliding Mode Control Based on Binary Particle Swarm Optimization for DC–AC Converters," Energies, MDPI, vol. 12(11), pages 1-14, June.
    2. Min Huang & Han Li & Weimin Wu & Frede Blaabjerg, 2019. "Observer-Based Sliding Mode Control to Improve Stability of Three-Phase LCL-Filtered Grid-Connected VSIs," Energies, MDPI, vol. 12(8), pages 1-15, April.
    3. Matthias Schiesser & Sébastien Wasterlain & Mario Marchesoni & Mauro Carpita, 2018. "A Simplified Design Strategy for Multi-Resonant Current Control of a Grid-Connected Voltage Source Inverter with an LCL Filter," Energies, MDPI, vol. 11(3), pages 1-15, March.
    4. Chengbi Zeng & Sudan Li & Hanwen Wang & Hong Miao, 2021. "A Frequency Adaptive Scheme Based on Newton Structure of PRRC for LCL-Type Inverter Connected with Weak Grid," Energies, MDPI, vol. 14(14), pages 1-18, July.
    5. Md Alamgir Hossain & Hemanshu Roy Pota & Walid Issa & Md Jahangir Hossain, 2017. "Overview of AC Microgrid Controls with Inverter-Interfaced Generations," Energies, MDPI, vol. 10(9), pages 1-27, August.
    6. Cheng Nie & Yue Wang & Wanjun Lei & Tian Li & Shiyuan Yin, 2018. "Modeling and Enhanced Error-Free Current Control Strategy for Inverter with Virtual Resistor Damping," Energies, MDPI, vol. 11(10), pages 1-15, September.
    7. Xiaojun Ding & Kaicheng Li & Yuanzheng Li & Delong Cai & Yi Luo & Youli Dong, 2018. "A Novel Approach for Searching the Upper/Lower Bounds of Uncertainty Parameters in Microgrids," Energies, MDPI, vol. 11(5), pages 1-23, April.
    8. Thuy Vi Tran & Seung-Jin Yoon & Kyeong-Hwa Kim, 2018. "An LQR-Based Controller Design for an LCL-Filtered Grid-Connected Inverter in Discrete-Time State-Space under Distorted Grid Environment," Energies, MDPI, vol. 11(8), pages 1-28, August.
    9. Clint Z. Ally & Erik C. W. de Jong, 2021. "Obtaining Robust Performance of a Current fed Voltage Source Inverter for Virtual Inertia Response in a Low Short Circuit Ratio Condition," Energies, MDPI, vol. 14(17), pages 1-18, September.
    10. Fankun Meng & Zhengguo Li & Xiaoli Sun & Xiaoqin Wen & Michael Negnevitsky & Linru You, 2020. "Speed Fluctuation Suppression Based on an Adaptive Periodic Disturbance Observer for an Inverter Compressor," Energies, MDPI, vol. 13(19), pages 1-23, September.
    11. Jose Miguel Espi & Rafael Garcia-Gil & Jaime Castello, 2017. "Capacitive Emulation for LCL-Filtered Grid-Connected Converters," Energies, MDPI, vol. 10(7), pages 1-15, July.
    12. Filip Filipović & Milutin Petronijević & Nebojša Mitrović & Bojan Banković & Vojkan Kostić, 2019. "A Novel Repetitive Control Enhanced Phase-Locked Loop for Synchronization of Three-Phase Grid-Connected Converters," Energies, MDPI, vol. 13(1), pages 1-25, December.
    13. Seung-Jin Yoon & Ngoc Bao Lai & Kyeong-Hwa Kim, 2018. "A Systematic Controller Design for a Grid-Connected Inverter with LCL Filter Using a Discrete-Time Integral State Feedback Control and State Observer," Energies, MDPI, vol. 11(2), pages 1-20, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:6:p:1594-:d:153121. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.