IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i10p1998-d234127.html
   My bibliography  Save this article

Estimation of the Daily Variability of Aggregate Wind Power Generation in Alberta, Canada

Author

Listed:
  • Yilan Luo

    (Department of Mathematics and Statistics, University of Calgary, 2500 University Dr NW, Calgary, AB T2N 1N4, Canada
    These authors contributed equally to this work.)

  • Deniz Sezer

    (Department of Mathematics and Statistics, University of Calgary, 2500 University Dr NW, Calgary, AB T2N 1N4, Canada
    These authors contributed equally to this work.)

  • David Wood

    (Department of Mechanical and Manufacturing Engineering, University of Calgary, 2500 University Dr NW, Calgary, AB T2N 1N4, Canada
    These authors contributed equally to this work.)

  • Mingkuan Wu

    (Department of Mathematics and Statistics, University of Calgary, 2500 University Dr NW, Calgary, AB T2N 1N4, Canada
    These authors contributed equally to this work.)

  • Hamid Zareipour

    (Department of Electrical and Computer Engineering, University of Calgary, 2500 University Dr NW, Calgary, AB T2N 1N4, Canada
    These authors contributed equally to this work.)

Abstract

This paper describes a hierarchy of increasingly complex statistical models for wind power generation in Alberta applied to wind power production data that are publicly available. The models are based on combining spatial and temporal correlations. We apply the method of Gaussian random fields to analyze the wind power time series of the 19 existing wind farms in Alberta. Following the work of Gneiting et al., three space-time models are used: Stationary, Separability, and Full Symmetry. We build several spatio-temporal covariance function estimates with increasing complexity: separable, non-separable and symmetric, and non-separable and non-symmetric. We compare the performance of the models using kriging predictions and prediction intervals for both the existing wind farms and a new farm in Alberta. It is shown that the spatial correlation in the models captures the predominantly westerly prevailing wind direction. We use the selected model to forecast the mean and the standard deviation of the future aggregate wind power generation of Alberta and investigate new wind farm siting on the basis of reducing aggregate variability.

Suggested Citation

  • Yilan Luo & Deniz Sezer & David Wood & Mingkuan Wu & Hamid Zareipour, 2019. "Estimation of the Daily Variability of Aggregate Wind Power Generation in Alberta, Canada," Energies, MDPI, vol. 12(10), pages 1-29, May.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:10:p:1998-:d:234127
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/10/1998/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/10/1998/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gneiting, Tilmann & Larson, Kristin & Westrick, Kenneth & Genton, Marc G. & Aldrich, Eric, 2006. "Calibrated Probabilistic Forecasting at the Stateline Wind Energy Center: The Regime-Switching SpaceTime Method," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 968-979, September.
    2. David J. Allcroft & Chris A. Glasbey, 2003. "A latent Gaussian Markov random‐field model for spatiotemporal rainfall disaggregation," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 52(4), pages 487-498, October.
    3. Morales, J.M. & Mínguez, R. & Conejo, A.J., 2010. "A methodology to generate statistically dependent wind speed scenarios," Applied Energy, Elsevier, vol. 87(3), pages 843-855, March.
    4. Caroline De Oliveira Costa Souza Rosa & Kelly Alonso Costa & Eliane Da Silva Christo & Pâmela Braga Bertahone, 2017. "Complementarity of Hydro, Photovoltaic, and Wind Power in Rio de Janeiro State," Sustainability, MDPI, vol. 9(7), pages 1-12, June.
    5. Jurasz, Jakub & Beluco, Alexandre & Canales, Fausto A., 2018. "The impact of complementarity on power supply reliability of small scale hybrid energy systems," Energy, Elsevier, vol. 161(C), pages 737-743.
    6. Gneiting T., 2002. "Nonseparable, Stationary Covariance Functions for Space-Time Data," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 590-600, June.
    7. Hering, Amanda S. & Genton, Marc G., 2010. "Powering Up With Space-Time Wind Forecasting," Journal of the American Statistical Association, American Statistical Association, vol. 105(489), pages 92-104.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Yin & Davanloo Tajbakhsh, Sam & Conejo, Antonio J., 2021. "Spatiotemporal wind forecasting by learning a hierarchically sparse inverse covariance matrix using wind directions," International Journal of Forecasting, Elsevier, vol. 37(2), pages 812-824.
    2. Aziz Ezzat, Ahmed, 2020. "Turbine-specific short-term wind speed forecasting considering within-farm wind field dependencies and fluctuations," Applied Energy, Elsevier, vol. 269(C).
    3. Tascikaraoglu, Akin & Sanandaji, Borhan M. & Poolla, Kameshwar & Varaiya, Pravin, 2016. "Exploiting sparsity of interconnections in spatio-temporal wind speed forecasting using Wavelet Transform," Applied Energy, Elsevier, vol. 165(C), pages 735-747.
    4. Daniela Castro-Camilo & Raphaël Huser & Håvard Rue, 2019. "A Spliced Gamma-Generalized Pareto Model for Short-Term Extreme Wind Speed Probabilistic Forecasting," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 24(3), pages 517-534, September.
    5. Amanda Hering, 2014. "Comments on: Space-time wind speed forecasting for improved power system dispatch," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(1), pages 34-44, March.
    6. Gallego, C. & Pinson, P. & Madsen, H. & Costa, A. & Cuerva, A., 2011. "Influence of local wind speed and direction on wind power dynamics – Application to offshore very short-term forecasting," Applied Energy, Elsevier, vol. 88(11), pages 4087-4096.
    7. Daniel Ambach & Robert Garthoff, 2016. "Vorhersagen der Windgeschwindigkeit und Windenergie in Deutschland," AStA Wirtschafts- und Sozialstatistisches Archiv, Springer;Deutsche Statistische Gesellschaft - German Statistical Society, vol. 10(1), pages 15-36, February.
    8. Amanda S. Hering & Karen Kazor & William Kleiber, 2015. "A Markov-Switching Vector Autoregressive Stochastic Wind Generator for Multiple Spatial and Temporal Scales," Resources, MDPI, vol. 4(1), pages 1-23, February.
    9. Taylor, James W., 2017. "Probabilistic forecasting of wind power ramp events using autoregressive logit models," European Journal of Operational Research, Elsevier, vol. 259(2), pages 703-712.
    10. Duca, Victor E.L.A. & Fonseca, Thaís C.O. & Cyrino Oliveira, Fernando Luiz, 2023. "An overview of non-Gaussian state-space models for wind speed data," Energy, Elsevier, vol. 266(C).
    11. Xinxin Zhu & Marc Genton & Yingzhong Gu & Le Xie, 2014. "Rejoinder on: Space-time wind speed forecasting for improved power system dispatch," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(1), pages 45-50, March.
    12. Croonenbroeck, Carsten & Ambach, Daniel, 2015. "Censored spatial wind power prediction with random effects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 613-622.
    13. Thordis L. Thorarinsdottir & Tilmann Gneiting, 2010. "Probabilistic forecasts of wind speed: ensemble model output statistics by using heteroscedastic censored regression," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 173(2), pages 371-388, April.
    14. Ganggang Xu & Marc G. Genton, 2017. "Tukey -and- Random Fields," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(519), pages 1236-1249, July.
    15. Tansu Filik, 2016. "Improved Spatio-Temporal Linear Models for Very Short-Term Wind Speed Forecasting," Energies, MDPI, vol. 9(3), pages 1-15, March.
    16. Xinxin Zhu & Marc Genton & Yingzhong Gu & Le Xie, 2014. "Space-time wind speed forecasting for improved power system dispatch," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(1), pages 1-25, March.
    17. Lohmann, Timo & Hering, Amanda S. & Rebennack, Steffen, 2016. "Spatio-temporal hydro forecasting of multireservoir inflows for hydro-thermal scheduling," European Journal of Operational Research, Elsevier, vol. 255(1), pages 243-258.
    18. Giwhyun Lee & Yu Ding & Marc G. Genton & Le Xie, 2015. "Power Curve Estimation With Multivariate Environmental Factors for Inland and Offshore Wind Farms," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(509), pages 56-67, March.
    19. Daniel Ambach & Robert Garthoff, 2016. "Vorhersagen der Windgeschwindigkeit und Windenergie in Deutschland [Predictions of wind speed and wind energy in Germany]," AStA Wirtschafts- und Sozialstatistisches Archiv, Springer;Deutsche Statistische Gesellschaft - German Statistical Society, vol. 10(1), pages 15-36, February.
    20. Zhang, Yao & Wang, Jianxue & Wang, Xifan, 2014. "Review on probabilistic forecasting of wind power generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 255-270.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:10:p:1998-:d:234127. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.