IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2018i1p67-d193348.html
   My bibliography  Save this article

Transient Temperature Calculation and Multi-Parameter Thermal Protection of Overhead Transmission Lines Based on an Equivalent Thermal Network

Author

Listed:
  • Jian Hu

    (State Key Laboratory of Power Transmission Equipment & System Security and New Technology, School of Electrical Engineering, Chongqing University, Shapingba District, Chongqing 400044, China)

  • Xiaofu Xiong

    (State Key Laboratory of Power Transmission Equipment & System Security and New Technology, School of Electrical Engineering, Chongqing University, Shapingba District, Chongqing 400044, China)

  • Jing Chen

    (State Key Laboratory of Power Transmission Equipment & System Security and New Technology, School of Electrical Engineering, Chongqing University, Shapingba District, Chongqing 400044, China)

  • Wei Wang

    (State Key Laboratory of Power Transmission Equipment & System Security and New Technology, School of Electrical Engineering, Chongqing University, Shapingba District, Chongqing 400044, China)

  • Jian Wang

    (State Key Laboratory of Power Transmission Equipment & System Security and New Technology, School of Electrical Engineering, Chongqing University, Shapingba District, Chongqing 400044, China)

Abstract

The overload degree of a transmission line is represented by currents in traditional overload protection, which cannot reflect its safety condition accurately. The sudden rise in transmission line current may lead to cascading tripping under traditional protection during power flow transfer in a power system. Therefore, timely and accurate analysis of the transient temperature rise of overhead transmission lines, revealing their overload endurance capability under the premise of ensuring safety, and coordination with power system controls can effectively eliminate overloading. This paper presents a transient temperature calculation method for overhead transmission lines based on an equivalent thermal network. This method can fully consider the temperature-dependent characteristics with material properties, convective heat resistance, and radiation heat and can accurately calculate the gradient distribution and response of the conductor cross-section temperature. The validity and accuracy of the proposed calculation method are verified by a test platform. In addition, a multi-parameter thermal protection strategy is proposed on the basis of the abovementioned calculation method. The protection can adequately explore the maximum overload capability of the line, and prevent from unnecessary tripping to avoid the expansion of accidents. Finally, the validity of the proposed protection is verified by the modified 29-bus system.

Suggested Citation

  • Jian Hu & Xiaofu Xiong & Jing Chen & Wei Wang & Jian Wang, 2018. "Transient Temperature Calculation and Multi-Parameter Thermal Protection of Overhead Transmission Lines Based on an Equivalent Thermal Network," Energies, MDPI, vol. 12(1), pages 1-25, December.
  • Handle: RePEc:gam:jeners:v:12:y:2018:i:1:p:67-:d:193348
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/1/67/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/1/67/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Alberto Arroyo & Pablo Castro & Raquel Martinez & Mario Manana & Alfredo Madrazo & Ramón Lecuna & Antonio Gonzalez, 2015. "Comparison between IEEE and CIGRE Thermal Behaviour Standards and Measured Temperature on a 132-kV Overhead Power Line," Energies, MDPI, vol. 8(12), pages 1-12, December.
    2. Hideharu Sugihara & Tsuyoshi Funaki & Nobuyuki Yamaguchi, 2017. "Evaluation Method for Real-Time Dynamic Line Ratings Based on Line Current Variation Model for Representing Forecast Error of Intermittent Renewable Generation," Energies, MDPI, vol. 10(4), pages 1-16, April.
    3. Mirza Sarajlić & Jože Pihler & Nermin Sarajlić & Gorazd Štumberger, 2018. "Identification of the Heat Equation Parameters for Estimation of a Bare Overhead Conductor’s Temperature by the Differential Evolution Algorithm," Energies, MDPI, vol. 11(8), pages 1-17, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mengxia Wang & Mingqiang Wang & Jinxin Huang & Zhe Jiang & Jinyan Huang, 2018. "A Thermal Rating Calculation Approach for Wind Power Grid-Integrated Overhead Lines," Energies, MDPI, vol. 11(6), pages 1-15, June.
    2. Hideharu Sugihara & Tsuyoshi Funaki & Nobuyuki Yamaguchi, 2017. "Evaluation Method for Real-Time Dynamic Line Ratings Based on Line Current Variation Model for Representing Forecast Error of Intermittent Renewable Generation," Energies, MDPI, vol. 10(4), pages 1-16, April.
    3. Fabio Massaro & Mariano Giuseppe Ippolito & Gaetano Zizzo & Giovanni Filippone & Andrea Puccio, 2018. "Methodologies for the Exploitation of Existing Energy Corridors. GIS Analysis and DTR Applications," Energies, MDPI, vol. 11(4), pages 1-15, April.
    4. Jiapeng Liu & Hao Yang & Shengjie Yu & Sen Wang & Yu Shang & Fan Yang, 2018. "Real-Time Transient Thermal Rating and the Calculation of Risk Level of Transmission Lines," Energies, MDPI, vol. 11(5), pages 1-14, May.
    5. Xiansi Lou & Wei Chen & Chuangxin Guo, 2019. "Using the Thermal Inertia of Transmission Lines for Coping with Post-Contingency Overflows," Energies, MDPI, vol. 13(1), pages 1-23, December.
    6. Francesca Capelli & Jordi-Roger Riba & Joan Pérez, 2016. "Three-Dimensional Finite-Element Analysis of the Short-Time and Peak Withstand Current Tests in Substation Connectors," Energies, MDPI, vol. 9(6), pages 1-16, May.
    7. Rossana Coccia & Veronica Tonti & Chiara Germanò & Francesco Palone & Lorenzo Papi & Lorenzo Ricciardi Celsi, 2022. "A Multi-Variable DTR Algorithm for the Estimation of Conductor Temperature and Ampacity on HV Overhead Lines by IoT Data Sensors," Energies, MDPI, vol. 15(7), pages 1-13, April.
    8. Mirza Sarajlić & Jože Pihler & Nermin Sarajlić & Gorazd Štumberger, 2018. "Identification of the Heat Equation Parameters for Estimation of a Bare Overhead Conductor’s Temperature by the Differential Evolution Algorithm," Energies, MDPI, vol. 11(8), pages 1-17, August.
    9. Raquel Martinez & Mario Manana & Alberto Arroyo & Sergio Bustamante & Alberto Laso & Pablo Castro & Rafael Minguez, 2021. "Dynamic Rating Management of Overhead Transmission Lines Operating under Multiple Weather Conditions," Energies, MDPI, vol. 14(4), pages 1-21, February.
    10. Phillips, Tyler & DeLeon, Rey & Senocak, Inanc, 2017. "Dynamic rating of overhead transmission lines over complex terrain using a large-eddy simulation paradigm," Renewable Energy, Elsevier, vol. 108(C), pages 380-389.
    11. Ying-Yi Hong, 2016. "Electric Power Systems Research," Energies, MDPI, vol. 9(10), pages 1-4, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2018:i:1:p:67-:d:193348. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.