IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i6p1523-d151930.html
   My bibliography  Save this article

A Thermal Rating Calculation Approach for Wind Power Grid-Integrated Overhead Lines

Author

Listed:
  • Mengxia Wang

    (Key Laboratory of Power System Intelligent Dispatch and Control, Shandong University, Jinan 250061, China)

  • Mingqiang Wang

    (Key Laboratory of Power System Intelligent Dispatch and Control, Shandong University, Jinan 250061, China)

  • Jinxin Huang

    (State Grid of Technology College, Jinan 250002, China)

  • Zhe Jiang

    (Electric Power Research Institute, State Grid Shandong Electric Power Company, Jinan 250003, China)

  • Jinyan Huang

    (ZaoZhuang Power Supply Company of State Grid Shandong Electric Power Company, ZaoZhuang 264000, China)

Abstract

Currently, the rapid increase in wind power integration in power systems is resulting in an increasing power flow in the grid-integrated power transmission lines of wind farms. The wind power curtailment caused by the current limits (thermal ratings) of the wind power integration overhead lines (WPIOLs) is becoming increasingly common. Aiming at this issue, the influence of conductor heating on the loss of tensile strength (LOTS) and sag of a WPIOL was analyzed in this paper. Then a decision model is proposed for the thermal ratings of WPIOLs, which regards the minimized wind power curtailment as objective and introduces permissible cumulative LOTS and sag of the conductor as constraints. Based on this model, the thermal rating for a WPIOL can be decided to ensure the expected service life of the conductor and safe clearance. In addition, case studies are used to demonstrate that the proposed approach is capable of improving the conservatism of conventional thermal rating calculation and reducing the wind power curtailment by improving the utilization efficiency of WPIOLs.

Suggested Citation

  • Mengxia Wang & Mingqiang Wang & Jinxin Huang & Zhe Jiang & Jinyan Huang, 2018. "A Thermal Rating Calculation Approach for Wind Power Grid-Integrated Overhead Lines," Energies, MDPI, vol. 11(6), pages 1-15, June.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:6:p:1523-:d:151930
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/6/1523/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/6/1523/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Alberto Arroyo & Pablo Castro & Raquel Martinez & Mario Manana & Alfredo Madrazo & Ramón Lecuna & Antonio Gonzalez, 2015. "Comparison between IEEE and CIGRE Thermal Behaviour Standards and Measured Temperature on a 132-kV Overhead Power Line," Energies, MDPI, vol. 8(12), pages 1-12, December.
    2. Hideharu Sugihara & Tsuyoshi Funaki & Nobuyuki Yamaguchi, 2017. "Evaluation Method for Real-Time Dynamic Line Ratings Based on Line Current Variation Model for Representing Forecast Error of Intermittent Renewable Generation," Energies, MDPI, vol. 10(4), pages 1-16, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiansi Lou & Wei Chen & Chuangxin Guo, 2019. "Using the Thermal Inertia of Transmission Lines for Coping with Post-Contingency Overflows," Energies, MDPI, vol. 13(1), pages 1-23, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jian Hu & Xiaofu Xiong & Jing Chen & Wei Wang & Jian Wang, 2018. "Transient Temperature Calculation and Multi-Parameter Thermal Protection of Overhead Transmission Lines Based on an Equivalent Thermal Network," Energies, MDPI, vol. 12(1), pages 1-25, December.
    2. Hideharu Sugihara & Tsuyoshi Funaki & Nobuyuki Yamaguchi, 2017. "Evaluation Method for Real-Time Dynamic Line Ratings Based on Line Current Variation Model for Representing Forecast Error of Intermittent Renewable Generation," Energies, MDPI, vol. 10(4), pages 1-16, April.
    3. Fabio Massaro & Mariano Giuseppe Ippolito & Gaetano Zizzo & Giovanni Filippone & Andrea Puccio, 2018. "Methodologies for the Exploitation of Existing Energy Corridors. GIS Analysis and DTR Applications," Energies, MDPI, vol. 11(4), pages 1-15, April.
    4. Jiapeng Liu & Hao Yang & Shengjie Yu & Sen Wang & Yu Shang & Fan Yang, 2018. "Real-Time Transient Thermal Rating and the Calculation of Risk Level of Transmission Lines," Energies, MDPI, vol. 11(5), pages 1-14, May.
    5. Xiansi Lou & Wei Chen & Chuangxin Guo, 2019. "Using the Thermal Inertia of Transmission Lines for Coping with Post-Contingency Overflows," Energies, MDPI, vol. 13(1), pages 1-23, December.
    6. Francesca Capelli & Jordi-Roger Riba & Joan Pérez, 2016. "Three-Dimensional Finite-Element Analysis of the Short-Time and Peak Withstand Current Tests in Substation Connectors," Energies, MDPI, vol. 9(6), pages 1-16, May.
    7. Rossana Coccia & Veronica Tonti & Chiara Germanò & Francesco Palone & Lorenzo Papi & Lorenzo Ricciardi Celsi, 2022. "A Multi-Variable DTR Algorithm for the Estimation of Conductor Temperature and Ampacity on HV Overhead Lines by IoT Data Sensors," Energies, MDPI, vol. 15(7), pages 1-13, April.
    8. Mirza Sarajlić & Jože Pihler & Nermin Sarajlić & Gorazd Štumberger, 2018. "Identification of the Heat Equation Parameters for Estimation of a Bare Overhead Conductor’s Temperature by the Differential Evolution Algorithm," Energies, MDPI, vol. 11(8), pages 1-17, August.
    9. Raquel Martinez & Mario Manana & Alberto Arroyo & Sergio Bustamante & Alberto Laso & Pablo Castro & Rafael Minguez, 2021. "Dynamic Rating Management of Overhead Transmission Lines Operating under Multiple Weather Conditions," Energies, MDPI, vol. 14(4), pages 1-21, February.
    10. Phillips, Tyler & DeLeon, Rey & Senocak, Inanc, 2017. "Dynamic rating of overhead transmission lines over complex terrain using a large-eddy simulation paradigm," Renewable Energy, Elsevier, vol. 108(C), pages 380-389.
    11. Ying-Yi Hong, 2016. "Electric Power Systems Research," Energies, MDPI, vol. 9(10), pages 1-4, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:6:p:1523-:d:151930. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.