IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2018i1p19-d192461.html
   My bibliography  Save this article

Formal Asymptotic Analysis of Online Scheduling Algorithms for Plug-In Electric Vehicles’ Charging

Author

Listed:
  • Asad Ahmed

    (School of Electrical Engineering and Computer Science, National University of Sciences and Technology (NUST), H-12 Islamabad, Pakistan
    These authors contributed equally to this work.)

  • Osman Hasan

    (School of Electrical Engineering and Computer Science, National University of Sciences and Technology (NUST), H-12 Islamabad, Pakistan
    These authors contributed equally to this work.)

  • Falah Awwad

    (College of Engineering, United Arab Emirates University, Al-Ain 15551, UAE)

  • Nabil Bastaki

    (College of Engineering, United Arab Emirates University, Al-Ain 15551, UAE)

  • Syed Rafay Hasan

    (Department of Electrical and Computer Engineering, Tennessee Technological University, Cookeville, TN 38505, USA)

Abstract

A large-scale integration of plug-in electric vehicles (PEVs) into the power grid system has necessitated the design of online scheduling algorithms to accommodate the after-effects of this new type of load, i.e., PEVs, on the overall efficiency of the power system. In online settings, the low computational complexity of the corresponding scheduling algorithms is of paramount importance for the reliable, secure, and efficient operation of the grid system. Generally, the computational complexity of an algorithm is computed using asymptotic analysis. Traditionally, the analysis is performed using the paper-pencil proof method, which is error-prone and thus not suitable for analyzing the mission-critical online scheduling algorithms for PEV charging. To overcome these issues, this paper presents a formal asymptotic analysis approach for online scheduling algorithms for PEV charging using higher-order-logic theorem proving, which is a sound computer-based verification approach. For illustration purposes, we present the complexity analysis of two state-of-the-art online algorithms: the Online cooRdinated CHARging Decision (ORCHARD) algorithm and online Expected Load Flattening (ELF) algorithm.

Suggested Citation

  • Asad Ahmed & Osman Hasan & Falah Awwad & Nabil Bastaki & Syed Rafay Hasan, 2018. "Formal Asymptotic Analysis of Online Scheduling Algorithms for Plug-In Electric Vehicles’ Charging," Energies, MDPI, vol. 12(1), pages 1-20, December.
  • Handle: RePEc:gam:jeners:v:12:y:2018:i:1:p:19-:d:192461
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/1/19/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/1/19/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Aghaei, Jamshid & Alizadeh, Mohammad-Iman, 2013. "Demand response in smart electricity grids equipped with renewable energy sources: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 64-72.
    2. Guille, Christophe & Gross, George, 2009. "A conceptual framework for the vehicle-to-grid (V2G) implementation," Energy Policy, Elsevier, vol. 37(11), pages 4379-4390, November.
    3. Sara Deilami, 2018. "Online Coordination of Plug-In Electric Vehicles Considering Grid Congestion and Smart Grid Power Quality," Energies, MDPI, vol. 11(9), pages 1-17, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Paterakis, Nikolaos G. & Erdinç, Ozan & Catalão, João P.S., 2017. "An overview of Demand Response: Key-elements and international experience," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 871-891.
    2. Rabiee, Abdorreza & Sadeghi, Mohammad & Aghaeic, Jamshid & Heidari, Alireza, 2016. "Optimal operation of microgrids through simultaneous scheduling of electrical vehicles and responsive loads considering wind and PV units uncertainties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 721-739.
    3. Chou, Jui-Sheng & Gusti Ayu Novi Yutami, I, 2014. "Smart meter adoption and deployment strategy for residential buildings in Indonesia," Applied Energy, Elsevier, vol. 128(C), pages 336-349.
    4. Mubbashir Ali & Jussi Ekström & Matti Lehtonen, 2018. "Sizing Hydrogen Energy Storage in Consideration of Demand Response in Highly Renewable Generation Power Systems," Energies, MDPI, vol. 11(5), pages 1-11, May.
    5. Bogdanov, Dmitrii & Breyer, Christian, 2024. "Role of smart charging of electric vehicles and vehicle-to-grid in integrated renewables-based energy systems on country level," Energy, Elsevier, vol. 301(C).
    6. Chaouachi, Aymen & Bompard, Ettore & Fulli, Gianluca & Masera, Marcelo & De Gennaro, Michele & Paffumi, Elena, 2016. "Assessment framework for EV and PV synergies in emerging distribution systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 719-728.
    7. Kley, Fabian & Lerch, Christian & Dallinger, David, 2011. "New business models for electric cars--A holistic approach," Energy Policy, Elsevier, vol. 39(6), pages 3392-3403, June.
    8. McPherson, Madeleine & Stoll, Brady, 2020. "Demand response for variable renewable energy integration: A proposed approach and its impacts," Energy, Elsevier, vol. 197(C).
    9. Eid, Cherrelle & Codani, Paul & Perez, Yannick & Reneses, Javier & Hakvoort, Rudi, 2016. "Managing electric flexibility from Distributed Energy Resources: A review of incentives for market design," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 237-247.
    10. Feuerriegel, Stefan & Neumann, Dirk, 2014. "Measuring the financial impact of demand response for electricity retailers," Energy Policy, Elsevier, vol. 65(C), pages 359-368.
    11. Christos N. Dimitriadis & Evangelos G. Tsimopoulos & Michael C. Georgiadis, 2021. "A Review on the Complementarity Modelling in Competitive Electricity Markets," Energies, MDPI, vol. 14(21), pages 1-27, November.
    12. Guo, Shiliang & Li, Pengpeng & Ma, Kai & Yang, Bo & Yang, Jie, 2022. "Robust energy management for industrial microgrid considering charging and discharging pressure of electric vehicles," Applied Energy, Elsevier, vol. 325(C).
    13. Alqahtani, Mohammed & Hu, Mengqi, 2022. "Dynamic energy scheduling and routing of multiple electric vehicles using deep reinforcement learning," Energy, Elsevier, vol. 244(PA).
    14. Meyabadi, A. Fattahi & Deihimi, M.H., 2017. "A review of demand-side management: Reconsidering theoretical framework," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 367-379.
    15. Jayawardena, A.V. & Meegahapola, L.G. & Robinson, D.A. & Perera, S., 2015. "Microgrid capability diagram: A tool for optimal grid-tied operation," Renewable Energy, Elsevier, vol. 74(C), pages 497-504.
    16. Jean-Michel Clairand & Paulo Guerra-Terán & Xavier Serrano-Guerrero & Mario González-Rodríguez & Guillermo Escrivá-Escrivá, 2019. "Electric Vehicles for Public Transportation in Power Systems: A Review of Methodologies," Energies, MDPI, vol. 12(16), pages 1-22, August.
    17. Nouha Dkhili & David Salas & Julien Eynard & Stéphane Thil & Stéphane Grieu, 2021. "Innovative Application of Model-Based Predictive Control for Low-Voltage Power Distribution Grids with Significant Distributed Generation," Energies, MDPI, vol. 14(6), pages 1-28, March.
    18. Luo, Lizi & Wu, Zhi & Gu, Wei & Huang, He & Gao, Song & Han, Jun, 2020. "Coordinated allocation of distributed generation resources and electric vehicle charging stations in distribution systems with vehicle-to-grid interaction," Energy, Elsevier, vol. 192(C).
    19. Motalleb, Mahdi & Thornton, Matsu & Reihani, Ehsan & Ghorbani, Reza, 2016. "A nascent market for contingency reserve services using demand response," Applied Energy, Elsevier, vol. 179(C), pages 985-995.
    20. Li, Yan-Fu & Zio, Enrico, 2012. "A multi-state model for the reliability assessment of a distributed generation system via universal generating function," Reliability Engineering and System Safety, Elsevier, vol. 106(C), pages 28-36.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2018:i:1:p:19-:d:192461. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.