IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2018i1p108-d193941.html
   My bibliography  Save this article

Investigation on Water Hammer Control of Centrifugal Pumps in Water Supply Pipeline Systems

Author

Listed:
  • Wuyi Wan

    (Department of Hydraulic Engineering, College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China)

  • Boran Zhang

    (Department of Hydraulic Engineering, College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China)

  • Xiaoyi Chen

    (Department of Hydraulic Engineering, College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China)

Abstract

Water hammer control in water supply pipeline systems is significant for protecting pipelines from damage. The goal of this research is to investigate the effects of pumps moment of inertia design on pipeline water hammer control. Based on the method of characteristics (MOC), a numerical model is established and plenty of simulations are conducted. Through numerical analysis, it is found that increasing the pumps moment of inertia has positive effects both on water hammer control as well as preventing pumps rapid runaway speed. Considering the extra cost of space, starting energy, and materials, an evaluation methodology of efficiency on the increasing moment of inertia is proposed. It can be regarded as a reference for engineers to design the moment of inertia of pumps in water supply pipeline systems. Combined with the optimized operations of the valve behind the pumps, the pipeline systems can be better protected from accident events.

Suggested Citation

  • Wuyi Wan & Boran Zhang & Xiaoyi Chen, 2018. "Investigation on Water Hammer Control of Centrifugal Pumps in Water Supply Pipeline Systems," Energies, MDPI, vol. 12(1), pages 1-20, December.
  • Handle: RePEc:gam:jeners:v:12:y:2018:i:1:p:108-:d:193941
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/1/108/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/1/108/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jianzhong Zhou & Yanhe Xu & Yang Zheng & Yuncheng Zhang, 2017. "Optimization of Guide Vane Closing Schemes of Pumped Storage Hydro Unit Using an Enhanced Multi-Objective Gravitational Search Algorithm," Energies, MDPI, vol. 10(7), pages 1-23, July.
    2. Wuyi Wan & Boran Zhang, 2018. "Investigation of Water Hammer Protection in Water Supply Pipeline Systems Using an Intelligent Self-Controlled Surge Tank," Energies, MDPI, vol. 11(6), pages 1-16, June.
    3. Xu, Beibei & Chen, Diyi & Zhang, Hao & Wang, Feifei, 2015. "Modeling and stability analysis of a fractional-order Francis hydro-turbine governing system," Chaos, Solitons & Fractals, Elsevier, vol. 75(C), pages 50-61.
    4. Klemen Nagode & Igor Škrjanc, 2014. "Modelling and Internal Fuzzy Model Power Control of a Francis Water Turbine," Energies, MDPI, vol. 7(2), pages 1-16, February.
    5. Daqing Zhou & Huixiang Chen & Languo Zhang, 2018. "Investigation of Pumped Storage Hydropower Power-Off Transient Process Using 3D Numerical Simulation Based on SP-VOF Hybrid Model," Energies, MDPI, vol. 11(4), pages 1-16, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yong Wang & Nan Wei & Dejun Wan & Shouxi Wang & Zongming Yuan, 2019. "Numerical Simulation for Preheating New Submarine Hot Oil Pipelines," Energies, MDPI, vol. 12(18), pages 1-26, September.
    2. Yan, Jingjing & Zhang, Huan & Wang, Yaran & Zhu, Zhaozhe & Bai, He & Li, Qicheng & You, Shijun, 2024. "Pump-stopping-induced hydraulic oscillations in long-distance district heating system: Modelling and a comprehensive analysis of critical factors," Energy, Elsevier, vol. 294(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wuyi Wan & Boran Zhang, 2018. "Investigation of Water Hammer Protection in Water Supply Pipeline Systems Using an Intelligent Self-Controlled Surge Tank," Energies, MDPI, vol. 11(6), pages 1-16, June.
    2. Daqing Zhou & Huixiang Chen & Jie Zhang & Shengwen Jiang & Jia Gui & Chunxia Yang & An Yu, 2019. "Numerical Study on Flow Characteristics in a Francis Turbine during Load Rejection," Energies, MDPI, vol. 12(4), pages 1-15, February.
    3. Mohammad Mahmoudi-Rad & Mohammad Najafzadeh, 2023. "Effects of Surge Tank Geometry on the Water Hammer Phenomenon: Numerical Investigation," Sustainability, MDPI, vol. 15(3), pages 1-19, January.
    4. Michał Kubrak & Agnieszka Malesińska & Apoloniusz Kodura & Kamil Urbanowicz & Paweł Bury & Michał Stosiak, 2021. "Water Hammer Control Using Additional Branched HDPE Pipe," Energies, MDPI, vol. 14(23), pages 1-18, November.
    5. Wang, Feifei & Chen, Diyi & Xu, Beibei & Zhang, Hao, 2016. "Nonlinear dynamics of a novel fractional-order Francis hydro-turbine governing system with time delay," Chaos, Solitons & Fractals, Elsevier, vol. 91(C), pages 329-338.
    6. Damian Liszka & Zbigniew Krzemianowski & Tomasz Węgiel & Dariusz Borkowski & Andrzej Polniak & Konrad Wawrzykowski & Artur Cebula, 2022. "Alternative Solutions for Small Hydropower Plants," Energies, MDPI, vol. 15(4), pages 1-31, February.
    7. Fu, Xiaolong & Li, Deyou & Wang, Hongjie & Zhang, Guanghui & Li, Zhenggui & Wei, Xianzhu, 2020. "Numerical simulation of the transient flow in a pump-turbine during load rejection process with special emphasis on hydraulic acoustic effect," Renewable Energy, Elsevier, vol. 155(C), pages 1127-1138.
    8. Huixiang Chen & Daqing Zhou & Yuan Zheng & Shengwen Jiang & An Yu & You Guo, 2018. "Load Rejection Transient Process Simulation of a Kaplan Turbine Model by Co-Adjusting Guide Vanes and Runner Blades," Energies, MDPI, vol. 11(12), pages 1-18, November.
    9. Yu, Xiaodong & Zhang, Jian & Fan, Chengyu & Chen, Sheng, 2016. "Stability analysis of governor-turbine-hydraulic system by state space method and graph theory," Energy, Elsevier, vol. 114(C), pages 613-622.
    10. Liu, Yi & Zhang, Jian & Liu, Zhe & Chen, Long & Yu, Xiaodong, 2022. "Surge wave characteristics for hydropower plant with upstream double surge tanks connected in series under small load disturbance," Renewable Energy, Elsevier, vol. 186(C), pages 667-676.
    11. O. A. Rosas-Jaimes & G. A. Munoz-Hernandez & G. Mino-Aguilar & J. Castaneda-Camacho & C. A. Gracios-Marin, 2019. "Evaluating Fractional PID Control in a Nonlinear MIMO Model of a Hydroelectric Power Station," Complexity, Hindawi, vol. 2019, pages 1-15, January.
    12. Chen, Jinbao & Zheng, Yang & Liu, Dong & Du, Yang & Xiao, Zhihuai, 2023. "Quantitative stability analysis of complex nonlinear hydraulic turbine regulation system based on accurate calculation," Applied Energy, Elsevier, vol. 351(C).
    13. Vinod, J. & Sarkar, Bikash K. & Sanyal, Dipankar, 2022. "Flow control in a small Francis turbine by system identification and fuzzy adaptation of PID and deadband controllers," Renewable Energy, Elsevier, vol. 201(P2), pages 87-99.
    14. Lu, Xueding & Li, Chaoshun & Liu, Dong & Wang, He & Zhu, Zhiwei & Ta, Xiaoqiang & Xu, Rongli, 2024. "Correlating analysis and optimization between hydropower system parameters and multi-frequency oscillation characteristics," Energy, Elsevier, vol. 304(C).
    15. Zheming Tong & Zhongqin Yang & Qing Huang & Qiang Yao, 2022. "Numerical Modeling of the Hydrodynamic Performance of Slanted Axial-Flow Urban Drainage Pumps at Shut-Off Condition," Energies, MDPI, vol. 15(5), pages 1-17, March.
    16. Jin, Faye & Luo, Yongyao & Zhao, Qiang & Cao, Jiali & Wang, Zhengwei, 2023. "Energy loss analysis of transition simulation for a prototype reversible pump turbine during load rejection process," Energy, Elsevier, vol. 284(C).
    17. Tianyu Yang & Bin Wang & Peng Chen, 2020. "Design of a Finite-Time Terminal Sliding Mode Controller for a Nonlinear Hydro-Turbine Governing System," Energies, MDPI, vol. 13(3), pages 1-14, February.
    18. Donglin Yan & Weiyu Wang & Qijuan Chen, 2018. "Nonlinear Modeling and Dynamic Analyses of the Hydro–Turbine Governing System in the Load Shedding Transient Regime," Energies, MDPI, vol. 11(5), pages 1-17, May.
    19. Daqing Zhou & Huixiang Chen & Languo Zhang, 2018. "Investigation of Pumped Storage Hydropower Power-Off Transient Process Using 3D Numerical Simulation Based on SP-VOF Hybrid Model," Energies, MDPI, vol. 11(4), pages 1-16, April.
    20. Chang Xu & Dianwei Qian, 2015. "Governor Design for a Hydropower Plant with an Upstream Surge Tank by GA-Based Fuzzy Reduced-Order Sliding Mode," Energies, MDPI, vol. 8(12), pages 1-16, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2018:i:1:p:108-:d:193941. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.