IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i8p2051-d162456.html
   My bibliography  Save this article

Prediction Error Analysis of Finite-Control-Set Model Predictive Current Control for IPMSMs

Author

Listed:
  • Jian Li

    (College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China)

  • Xiaoyan Huang

    (College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China)

  • Feng Niu

    (College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China
    State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300130, China)

  • Chaojie You

    (College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China)

  • Lijian Wu

    (College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China)

  • Youtong Fang

    (College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China)

Abstract

Finite-control-set model predictive current control (FCS-MPCC) has been widely investigated in the field of motor control. When the discrete motor prediction model is not obtained accurately, prediction error often occurs, which can result in improper determinations of optimal voltage vectors and can further affect the control performance of motor systems. However, papers evaluating the motor control performance employing FCS-MPCC rarely consider prediction error and its utilization to weaken the influence of inaccurate prediction model. This paper investigates in depth the prediction error caused by three influencing factors from the perspective of model accuracy—discretization method, prediction stepsize, and parameter mismatch. Firstly, the evaluation index, prediction error, is defined and its formulas considering the above three factors are derived based on interior permanent magnet synchronous motor (IPMSM). Then, the theoretical analysis of prediction error is provided. Finally, experimental results of an IPMSM drive system are presented to verify and complement the theoretical analysis. Both the theoretical analysis and experimental results fully elaborate the prediction error, which can offer practical guidelines for the evaluation and improvement of motor control performance, especially for FCS-MPCC in IPMSM applications.

Suggested Citation

  • Jian Li & Xiaoyan Huang & Feng Niu & Chaojie You & Lijian Wu & Youtong Fang, 2018. "Prediction Error Analysis of Finite-Control-Set Model Predictive Current Control for IPMSMs," Energies, MDPI, vol. 11(8), pages 1-16, August.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:8:p:2051-:d:162456
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/8/2051/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/8/2051/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Vijay Kumar Singh & Ravi Nath Tripathi & Tsuyoshi Hanamoto, 2018. "HIL Co-Simulation of Finite Set-Model Predictive Control Using FPGA for a Three-Phase VSI System," Energies, MDPI, vol. 11(4), pages 1-15, April.
    2. Huimin Li & Jian Gao & Shoudao Huang & Peng Fan, 2017. "A Novel Optimal Current Trajectory Control Strategy of IPMSM Considering the Cross Saturation Effects," Energies, MDPI, vol. 10(10), pages 1-16, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Junlei Chen & Shuo Chen & Xiang Wu & Guojun Tan & Jianqi Hao, 2019. "A Super-Twisting Sliding-Mode Stator Flux Observer for Sensorless Direct Torque and Flux Control of IPMSM," Energies, MDPI, vol. 12(13), pages 1-17, July.
    2. Lynn Verkroost & Joachim Druant & Hendrik Vansompel & Frederik De Belie & Peter Sergeant, 2019. "Performance Degradation of Surface PMSMs with Demagnetization Defect under Predictive Current Control," Energies, MDPI, vol. 12(5), pages 1-20, February.
    3. Yufeng Zhang & Zihui Wu & Qi Yan & Nan Huang & Guanghui Du, 2022. "An Improved Model−Free Current Predictive Control of Permanent Magnet Synchronous Motor Based on High−Gain Disturbance Observer," Energies, MDPI, vol. 16(1), pages 1-16, December.
    4. Yan Xu & Tingna Shi & Yan Yan & Xin Gu, 2019. "Dual-Vector Predictive Torque Control of Permanent Magnet Synchronous Motors Based on a Candidate Vector Table," Energies, MDPI, vol. 12(1), pages 1-15, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Željko Plantić & Tine Marčič & Miloš Beković & Gorazd Štumberger, 2019. "Sensorless PMSM Drive Implementation by Introduction of Maximum Efficiency Characteristics in Reference Current Generation," Energies, MDPI, vol. 12(18), pages 1-14, September.
    2. Cheng-Kai Lin & Jen-te Yu & Hao-Qun Huang & Jyun-Ting Wang & Hsing-Cheng Yu & Yen-Shin Lai, 2018. "A Dual-Voltage-Vector Model-Free Predictive Current Controller for Synchronous Reluctance Motor Drive Systems," Energies, MDPI, vol. 11(7), pages 1-29, July.
    3. Yuzhe Zhang & Xiaodong Liu & Haitao Li & Zhenbin Zhang, 2023. "A Model Independent Predictive Control of PMSG Wind Turbine Systems with a New Mechanism to Update Variables," Energies, MDPI, vol. 16(9), pages 1-15, April.
    4. Deepa Sankar & Lakshmi Syamala & Babu Chembathu Ayyappan & Mathew Kallarackal, 2021. "FPGA-Based Cost-Effective and Resource Optimized Solution of Predictive Direct Current Control for Power Converters," Energies, MDPI, vol. 14(22), pages 1-26, November.
    5. Van-Quang-Binh Ngo & Minh-Khai Nguyen & Tan-Tai Tran & Young-Cheol Lim & Joon-Ho Choi, 2018. "A Simplified Model Predictive Control for T-Type Inverter with Output LC Filter," Energies, MDPI, vol. 12(1), pages 1-18, December.
    6. Huimin Li & Shoudao Huang & Derong Luo & Jian Gao & Peng Fan, 2018. "Dynamic DC-link Voltage Adjustment for Electric Vehicles Considering the Cross Saturation Effects," Energies, MDPI, vol. 11(8), pages 1-22, August.
    7. Vijay Kumar Singh & Ravi Nath Tripathi & Tsuyoshi Hanamoto, 2020. "FPGA-Based Implementation of Finite Set-MPC for a VSI System Using XSG-Based Modeling," Energies, MDPI, vol. 13(1), pages 1-18, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:8:p:2051-:d:162456. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.