IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i8p2042-d162276.html
   My bibliography  Save this article

Time-Resolved Temperature Map Prediction of Concentration Photovoltaics Systems by Means of Coupled Ray Tracing Flux Analysis and Thermal Quadrupoles Modelling

Author

Listed:
  • Alejandro Mateos-Canseco

    (CONACYT—Centro de Investigación Científica de Yucatán—Renewable Energy Department, Parque Científico Tecnológico de Yucatán, Sierra Papacal, Mérida 97302, Yucatán, Mexico)

  • Manuel I. Peña-Cruz

    (CONACYT—Centro de Investigaciones en Óptica, A.C. Unidad Aguascalientes—Prol. Constitución 607, Fracc. Reserva Loma Bonita, Aguascalientes 20200, Aguascalientes, Mexico)

  • Arturo Díaz-Ponce

    (CONACYT—Centro de Investigaciones en Óptica, A.C. Unidad Aguascalientes—Prol. Constitución 607, Fracc. Reserva Loma Bonita, Aguascalientes 20200, Aguascalientes, Mexico)

  • Jean-Luc Battaglia

    (I2M Laboratory, UMR CNRS 5295, University of Bordeaux, 351 Cours de la Libération, 33405 Talence CEDEX, France)

  • Christophe Pradère

    (I2M Laboratory, UMR CNRS 5295, University of Bordeaux, 351 Cours de la Libération, 33405 Talence CEDEX, France)

  • Luis David Patino-Lopez

    (CONACYT—Centro de Investigación Científica de Yucatán—Renewable Energy Department, Parque Científico Tecnológico de Yucatán, Sierra Papacal, Mérida 97302, Yucatán, Mexico)

Abstract

A transient 3D thermal model based on the thermal quadrupole method, coupled to ray tracing analysis, is presented. This methodology can predict transient temperature maps under any time-fluctuating irradiance flux—either synthetic or experimental—providing a useful tool for the design and parametric optimization of concentration photovoltaics systems. Analytic simulations of a concentration photovoltaics system thermal response and assessment of in-plane thermal gradients induced by fast tracking point perturbations, like those induced by wind, are provided and discussed for the first time. Computation times for time-resolved temperature maps can be as short as 9 s for a full month of system operation, with stimuli inspired by real data. Such information could pave the way for more accurate studies of cell reliability under any set of worldwide irradiance conditions.

Suggested Citation

  • Alejandro Mateos-Canseco & Manuel I. Peña-Cruz & Arturo Díaz-Ponce & Jean-Luc Battaglia & Christophe Pradère & Luis David Patino-Lopez, 2018. "Time-Resolved Temperature Map Prediction of Concentration Photovoltaics Systems by Means of Coupled Ray Tracing Flux Analysis and Thermal Quadrupoles Modelling," Energies, MDPI, vol. 11(8), pages 1-24, August.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:8:p:2042-:d:162276
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/8/2042/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/8/2042/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Carlo Renno & Michele De Giacomo, 2014. "Dynamic Simulation of a CPV/T System Using the Finite Element Method," Energies, MDPI, vol. 7(11), pages 1-20, November.
    2. Baig, Hasan & Heasman, Keith C. & Mallick, Tapas K., 2012. "Non-uniform illumination in concentrating solar cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5890-5909.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Giannuzzi, Alessandra & Diolaiti, Emiliano & Lombini, Matteo & De Rosa, Adriano & Marano, Bruno & Bregoli, Giovanni & Cosentino, Giuseppe & Foppiani, Italo & Schreiber, Laura, 2015. "Enhancing the efficiency of solar concentrators by controlled optical aberrations: Method and photovoltaic application," Applied Energy, Elsevier, vol. 145(C), pages 211-222.
    2. Xu, Jintao & Chen, Fei & Xia, Entong & Gao, Chong & Deng, Chenggang, 2020. "An optimization design method and optical performance analysis on multi-sectioned compound parabolic concentrator with cylindrical absorber," Energy, Elsevier, vol. 197(C).
    3. Renzi, Massimiliano & Cioccolanti, Luca & Barazza, Giorgio & Egidi, Lorenzo & Comodi, Gabriele, 2017. "Design and experimental test of refractive secondary optics on the electrical performance of a 3-junction cell used in CPV systems," Applied Energy, Elsevier, vol. 185(P1), pages 233-243.
    4. Baig, Hasan & Sarmah, Nabin & Chemisana, Daniel & Rosell, Joan & Mallick, Tapas K., 2014. "Enhancing performance of a linear dielectric based concentrating photovoltaic system using a reflective film along the edge," Energy, Elsevier, vol. 73(C), pages 177-191.
    5. Shan, Feng & Fang, Guiyin & Zhao, Lei & Zhu, Yunzhi, 2024. "Optical, electrical, and thermal performance of low-concentrating photovoltaic/thermal system using microencapsulated phase change material suspension as a coolant," Renewable Energy, Elsevier, vol. 227(C).
    6. Perez-Enciso, Ricardo & Gallo, Alessandro & Riveros-Rosas, David & Fuentealba-Vidal, Edward & Perez-Rábago, Carlos, 2016. "A simple method to achieve a uniform flux distribution in a multi-faceted point focus concentrator," Renewable Energy, Elsevier, vol. 93(C), pages 115-124.
    7. Nadda, Rahul & Kumar, Anil & Maithani, Rajesh, 2018. "Efficiency improvement of solar photovoltaic/solar air collectors by using impingement jets: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 331-353.
    8. Yadav, Pankaj & Tripathi, Brijesh & Rathod, Siddharth & Kumar, Manoj, 2013. "Real-time analysis of low-concentration photovoltaic systems: A review towards development of sustainable energy technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 812-823.
    9. Chandan, & Dey, Sumon & Iqbal, S.Md. & Reddy, K.S. & Pesala, Bala, 2021. "Numerical modeling and performance assessment of elongated compound parabolic concentrator based LCPVT system," Renewable Energy, Elsevier, vol. 167(C), pages 199-216.
    10. Karolina Papis-Frączek & Krzysztof Sornek, 2022. "A Review on Heat Extraction Devices for CPVT Systems with Active Liquid Cooling," Energies, MDPI, vol. 15(17), pages 1-49, August.
    11. Ustaoglu, Abid & Ozbey, Umut & Torlaklı, Hande, 2020. "Numerical investigation of concentrating photovoltaic/thermal (CPV/T) system using compound hyperbolic –trumpet, V-trough and compound parabolic concentrators," Renewable Energy, Elsevier, vol. 152(C), pages 1192-1208.
    12. Cameron, William James & Reddy, K. Srinivas & Mallick, Tapas Kumar, 2022. "Review of high concentration photovoltaic thermal hybrid systems for highly efficient energy cogeneration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    13. Wang, Ao & Xuan, Yimin, 2020. "Multiscale prediction of localized hot-spot phenomena in solar cells," Renewable Energy, Elsevier, vol. 146(C), pages 1292-1300.
    14. Wang, Cheng-Long & Gong, Jing-Hu & Yan, Jia-Jie & Zhou, Yuan & Fan, Duo-Wang, 2019. "Theoretical and experimental study on the uniformity of reflective high concentration photovoltaic system with light funnel," Renewable Energy, Elsevier, vol. 133(C), pages 893-900.
    15. Renzi, M. & Egidi, L. & Comodi, G., 2015. "Performance analysis of two 3.5kWp CPV systems under real operating conditions," Applied Energy, Elsevier, vol. 160(C), pages 687-696.
    16. Majedul Islam & Prasad Yarlagadda & Azharul Karim, 2018. "Effect of the Orientation Schemes of the Energy Collection Element on the Optical Performance of a Parabolic Trough Concentrating Collector," Energies, MDPI, vol. 12(1), pages 1-20, December.
    17. Guihua Li & Jingjing Tang & Runsheng Tang, 2018. "A Theoretical Study on Performance and Design Optimization of Linear Dielectric Compound Parabolic Concentrating Photovoltaic Systems," Energies, MDPI, vol. 11(9), pages 1-30, September.
    18. Li, Guiqiang & Xuan, Qingdong & Pei, Gang & Su, Yuehong & Ji, Jie, 2018. "Effect of non-uniform illumination and temperature distribution on concentrating solar cell - A review," Energy, Elsevier, vol. 144(C), pages 1119-1136.
    19. Qu, Wanjun & Hong, Hui & Jin, Hongguang, 2019. "A spectral splitting solar concentrator for cascading solar energy utilization by integrating photovoltaics and solar thermal fuel," Applied Energy, Elsevier, vol. 248(C), pages 162-173.
    20. Liu, Huawei & Zhang, Jiazhen & Pei, Maoqing & Ju, Xinyu & Ju, Xing & Xu, Chao, 2024. "Optical, electrical, and thermal performance enhancement for a concentrating photovoltaic/thermal system using optimized polynomial compound parabolic concentrators," Applied Energy, Elsevier, vol. 358(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:8:p:2042-:d:162276. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.